This is a preprint.
CryoDRGN-AI: Neural ab initio reconstruction of challenging cryo-EM and cryo-ET datasets
- PMID: 38854058
- PMCID: PMC11160740
- DOI: 10.1101/2024.05.30.596729
CryoDRGN-AI: Neural ab initio reconstruction of challenging cryo-EM and cryo-ET datasets
Update in
-
CryoDRGN-AI: neural ab initio reconstruction of challenging cryo-EM and cryo-ET datasets.Nat Methods. 2025 Jul;22(7):1486-1494. doi: 10.1038/s41592-025-02720-4. Epub 2025 Jun 26. Nat Methods. 2025. PMID: 40571741
Abstract
Proteins and other biomolecules form dynamic macromolecular machines that are tightly orchestrated to move, bind, and perform chemistry. Cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET) can access the intrinsic heterogeneity of these complexes and are therefore key tools for understanding their function. However, 3D reconstruction of the collected imaging data presents a challenging computational problem, especially without any starting information, a setting termed ab initio reconstruction. Here, we introduce cryoDRGN-AI, a method leveraging an expressive neural representation and combining an exhaustive search strategy with gradient-based optimization to process challenging heterogeneous datasets. Using cryoDRGN-AI, we reveal new conformational states in large datasets, reconstruct previously unresolved motions from unfiltered datasets, and demonstrate ab initio reconstruction of biomolecular complexes from in situ data. With this expressive and scalable model for structure determination, we hope to unlock the full potential of cryo-EM and cryo-ET as a high-throughput tool for structural biology and discovery.
Conflict of interest statement
Competing Interests The authors declare no competing interests.
Figures






Similar articles
-
CryoDRGN-AI: neural ab initio reconstruction of challenging cryo-EM and cryo-ET datasets.Nat Methods. 2025 Jul;22(7):1486-1494. doi: 10.1038/s41592-025-02720-4. Epub 2025 Jun 26. Nat Methods. 2025. PMID: 40571741
-
End-to-end Training of Latent Space Diffusion Models for Conformational Heterogeneity in Cryo-EM Reconstruction.Int Conf Image Vis Comput N Z. 2024 Dec;2024:10.1109/ivcnz64857.2024.10794476. doi: 10.1109/ivcnz64857.2024.10794476. Epub 2024 Dec 19. Int Conf Image Vis Comput N Z. 2024. PMID: 40697794 Free PMC article.
-
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.Front Oncol. 2025 Jun 18;15:1480384. doi: 10.3389/fonc.2025.1480384. eCollection 2025. Front Oncol. 2025. PMID: 40606969 Free PMC article.
-
Artificial intelligence for detecting keratoconus.Cochrane Database Syst Rev. 2023 Nov 15;11(11):CD014911. doi: 10.1002/14651858.CD014911.pub2. Cochrane Database Syst Rev. 2023. PMID: 37965960 Free PMC article.
-
Artificial intelligence for diagnosing exudative age-related macular degeneration.Cochrane Database Syst Rev. 2024 Oct 17;10(10):CD015522. doi: 10.1002/14651858.CD015522.pub2. Cochrane Database Syst Rev. 2024. PMID: 39417312
References
-
- Yip K. M., Fischer N., Paknia E., Chari A. & Stark H. Atomic-resolution protein structure determination by cryo-em. Nature 587, 157–161 (2020). - PubMed
-
- Punjani A. & Fleet D. J. 3d variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-em. J. Struct. Biol. 213, 107702 (2021). - PubMed
Methods-Only References
-
- Vulović M. et al. Image formation modeling in cryo-electron microscopy. J. Struct. Biol. 183, 19–32 (2013). - PubMed
-
- Tancik M. et al. Fourier features let networks learn high frequency functions in low dimensional domains. In Advances in Neural Information Processing Systems (NeurIPS, 2020).
-
- He K. Zhang X., Ren S. & Sun J. Deep residual learning for image recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision 770–778 (CVPR, 2016).
-
- Paszke A. et al. Pytorch: an imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems (NeurIPS, 2019).
-
- Kingma D. P. & Ba J. Adam: A method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources