Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 May 6;32(10):17689-17703.
doi: 10.1364/OE.512305.

Efficient ultra-broadband low-resolution astrophotonic spectrographs

Free article

Efficient ultra-broadband low-resolution astrophotonic spectrographs

Pradip Gatkine et al. Opt Express. .
Free article

Abstract

Broadband low-resolution near-infrared spectrographs in a compact form are crucial for ground- and space-based astronomy and other fields of sensing. Astronomical spectroscopy poses stringent requirements including high efficiency, broad band operation (> 300 nm), and in some cases, polarization insensitivity. We present and compare experimental results from the design, fabrication, and characterization of broadband (1200 - 1650 nm) arrayed waveguide grating (AWG) spectrographs built using the two most promising low-loss platforms - Si3N4 (rectangular waveguides) and doped-SiO2 (square waveguides). These AWGs have a resolving power (λ/Δλ) of ∼200, free spectral range of ∼ 200-350 nm, and a small footprint of ∼ 50-100 mm2. The peak overall (fiber-chip-fiber) efficiency of the doped-SiO2 AWG was ∼ 79% (1 dB), and it exhibited a negligible polarization-dependent shift compared to the channel spacing. For Si3N4 AWGs, the peak overall efficiency in TE mode was ∼ 50% (3 dB), and the main loss component was found to be fiber-to-chip coupling losses. These broadband AWGs are key to enabling compact integrations such as multi-object spectrographs or dispersion back-ends for other astrophotonic devices such as photonic lanterns or nulling interferometers.

PubMed Disclaimer

LinkOut - more resources