Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jun;35(2):354-380.
doi: 10.1007/s11065-024-09642-6. Epub 2024 Jun 12.

Meta-analysis of Cognitive Function Following Non-severe SARS-CoV-2 Infection

Affiliations
Review

Meta-analysis of Cognitive Function Following Non-severe SARS-CoV-2 Infection

Tara A Austin et al. Neuropsychol Rev. 2025 Jun.

Abstract

To effectively diagnose and treat subjective cognitive symptoms in post-acute sequalae of COVID-19 (PASC), it is important to understand objective cognitive impairment across the range of acute COVID-19 severity. Despite the importance of this area of research, to our knowledge, there are no current meta-analyses of objective cognitive functioning following non-severe initial SARS-CoV-2 infection. The aim of this meta-analysis is to describe objective cognitive impairment in individuals with non-severe (mild or moderate) SARS-CoV-2 cases in the post-acute stage of infection. This meta-analysis was pre-registered with Prospero (CRD42021293124) and utilized the PRISMA checklist for reporting guidelines, with screening conducted by at least two independent reviewers for all aspects of the screening and data extraction process. Fifty-nine articles (total participants = 22,060) with three types of study designs met our full criteria. Individuals with non-severe (mild/moderate) initial SARS-CoV-2 infection demonstrated worse objective cognitive performance compared to healthy comparison participants. However, those with mild (nonhospitalized) initial SARS-CoV-2 infections had better objective cognitive performance than those with moderate (hospitalized but not requiring ICU care) or severe (hospitalized with ICU care) initial SARS-CoV-2 infections. For studies that used normative data comparisons instead of healthy comparison participants, there was a small and nearly significant effect when compared to normative data. There were high levels of heterogeneity (88.6 to 97.3%), likely reflecting small sample sizes and variations in primary study methodology. Individuals who have recovered from non-severe cases of SARS-CoV-2 infections may be at risk for cognitive decline or impairment and may benefit from cognitive health interventions.

Keywords: COVID-19; Cognition; Cognitive decline; PASC; Post-acute sequalae of COVID-19; SARS-CoV-2.

PubMed Disclaimer

Conflict of interest statement

Declarations. Ethical Approval: N/A. No original data. Competing Interests: The authors declare no competing interests. Disclaimer: The views expressed herein are those of the authors and do not necessarily reflect the official policy or position of the Department of Veterans Affairs or the United States Government.

Similar articles

  • Antibody tests for identification of current and past infection with SARS-CoV-2.
    Fox T, Geppert J, Dinnes J, Scandrett K, Bigio J, Sulis G, Hettiarachchi D, Mathangasinghe Y, Weeratunga P, Wickramasinghe D, Bergman H, Buckley BS, Probyn K, Sguassero Y, Davenport C, Cunningham J, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Struyf T, Van den Bruel A, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Deeks JJ; Cochrane COVID-19 Diagnostic Test Accuracy Group. Fox T, et al. Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD013652. doi: 10.1002/14651858.CD013652.pub2. Cochrane Database Syst Rev. 2022. PMID: 36394900 Free PMC article.
  • Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.
    Dinnes J, Sharma P, Berhane S, van Wyk SS, Nyaaba N, Domen J, Taylor M, Cunningham J, Davenport C, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Van den Bruel A, Deeks JJ; Cochrane COVID-19 Diagnostic Test Accuracy Group. Dinnes J, et al. Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3. Cochrane Database Syst Rev. 2022. PMID: 35866452 Free PMC article.
  • The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.
    Davenport C, Arevalo-Rodriguez I, Mateos-Haro M, Berhane S, Dinnes J, Spijker R, Buitrago-Garcia D, Ciapponi A, Takwoingi Y, Deeks JJ, Emperador D, Leeflang MMG, Van den Bruel A; Cochrane COVID-19 Diagnostic Test Accuracy Group. Davenport C, et al. Cochrane Database Syst Rev. 2024 Dec 16;12(12):CD014780. doi: 10.1002/14651858.CD014780. Cochrane Database Syst Rev. 2024. PMID: 39679851 Free PMC article.
  • Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
    Struyf T, Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Leeflang MM, Spijker R, Hooft L, Emperador D, Domen J, Tans A, Janssens S, Wickramasinghe D, Lannoy V, Horn SRA, Van den Bruel A; Cochrane COVID-19 Diagnostic Test Accuracy Group. Struyf T, et al. Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. Cochrane Database Syst Rev. 2022. PMID: 35593186 Free PMC article.
  • Physical interventions to interrupt or reduce the spread of respiratory viruses.
    Jefferson T, Dooley L, Ferroni E, Al-Ansary LA, van Driel ML, Bawazeer GA, Jones MA, Hoffmann TC, Clark J, Beller EM, Glasziou PP, Conly JM. Jefferson T, et al. Cochrane Database Syst Rev. 2023 Jan 30;1(1):CD006207. doi: 10.1002/14651858.CD006207.pub6. Cochrane Database Syst Rev. 2023. PMID: 36715243 Free PMC article.

Cited by

References

    1. Abramoff, B. A., Dillingham, T. R., Brown, L. A., Caldera, F., Caldwell, K. M., McLarney, M., & Pezzin, L. E. (2023). Psychological and cognitive functioning among patients receiving outpatient rehabilitation for post-COVID sequelae: An observational study. Archives of Physical Medicine and Rehabilitation, 104(1), 11–17. - PubMed
    1. Al-Aly, Z., Xie, Y., & Bowe, B. (2021). High-dimensional characterization of post-acute sequelae of COVID-19. Nature, 594(7862), 259–264. https://doi.org/10.1038/s41586-021-03553-9 - DOI - PubMed
    1. Albu, S., Zozaya, N. R., Murillo, N., García-Molina, A., Chacón, C. A. F., & Kumru, H. (2021). What’s going on following acute COVID-19? Clinical characteristics of patients in an out-patient rehabilitation program. NeuroRehabilitation, 48(4), 469–480. https://doi.org/10.3233/NRE-210025 - DOI - PubMed
    1. Almeria, M., Cejudo, J. C., Sotoca, J., Deus, J., & Krupinski, J. (2020). Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain, Behavior, & Immunity - Health, 9, 100163. https://doi.org/10.1016/j.bbih.2020.100163 - DOI
    1. Amalakanti, S., Arepalli, K. V. R., & Jillella, J. P. (2021). Cognitive assessment in asymptomatic COVID-19 subjects. VirusDisease, 32(1), 146–149. https://doi.org/10.1007/s13337-021-00663-w - DOI - PubMed - PMC

LinkOut - more resources