Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Aug:178:108705.
doi: 10.1016/j.compbiomed.2024.108705. Epub 2024 Jun 8.

Exploring the frontier: Transformer-based models in EEG signal analysis for brain-computer interfaces

Affiliations
Review

Exploring the frontier: Transformer-based models in EEG signal analysis for brain-computer interfaces

Maximilian Achim Pfeffer et al. Comput Biol Med. 2024 Aug.

Abstract

This review systematically explores the application of transformer-based models in EEG signal processing and brain-computer interface (BCI) development, with a distinct focus on ensuring methodological rigour and adhering to empirical validations within the existing literature. By examining various transformer architectures, such as the Temporal Spatial Transformer Network (TSTN) and EEG Conformer, this review delineates their capabilities in mitigating challenges intrinsic to EEG data, such as noise and artifacts, and their subsequent implications on decoding and classification accuracies across disparate mental tasks. The analytical scope extends to a meticulous examination of attention mechanisms within transformer models, delineating their role in illuminating critical temporal and spatial EEG features and facilitating interpretability in model decision-making processes. The discourse additionally encapsulates emerging works that substantiate the efficacy of transformer models in noise reduction of EEG signals and diversifying applications beyond the conventional motor imagery paradigm. Furthermore, this review elucidates evident gaps and propounds exploratory avenues in the applications of pre-trained transformers in EEG analysis and the potential expansion into real-time and multi-task BCI applications. Collectively, this review distils extant knowledge, navigates through the empirical findings, and puts forward a structured synthesis, thereby serving as a conduit for informed future research endeavours in transformer-enhanced, EEG-based BCI systems.

Keywords: Artificial intelligence; Brain-computer interface; Deep learning; Electroencephalography; Natural language processing; Transformer.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that there are no conflicts of interest.

References