Optical coupling of individual air-suspended carbon nanotubes to silicon microcavities
- PMID: 38866479
- PMCID: PMC11377212
- DOI: 10.2183/pjab.100.022
Optical coupling of individual air-suspended carbon nanotubes to silicon microcavities
Abstract
Carbon nanotubes are a telecom band emitter compatible with silicon photonics, and when coupled to microcavities, they present opportunities for exploiting quantum electrodynamical effects. Microdisk resonators demonstrate the feasibility of integration into the silicon platform. Efficient coupling is achieved using photonic crystal air-mode nanobeam cavities. The molecular screening effect on nanotube emission allows for spectral tuning of the coupling. The Purcell effect of the coupled cavity-exciton system reveals near-unity radiative quantum efficiencies of the excitons in carbon nanotubes.
Keywords: Purcell effect; carbon nanotubes; cavity quantum electrodynamics; microcavity; silicon photonics.
Figures







References
-
- Thomson D., Zilkie A., Bowers J. E., Komljenovic T., Reed G. T., Vivien L., et al. (2016) Roadmap on silicon photonics. J. Opt. 18, 073003.
-
- Wang Z., Abbasi A., Dave U., De Groote A., Kumari S., Kunert B., et al. (2017) Novel light source integration approaches for silicon photonics. Laser Photon. Rev. 11, 1700063.
-
- Kong J., Soh H. T., Cassell A. M., Quate C. F., Dai H. (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878-881.
-
- O'Connell M. J., Bachilo S. M., Huffman C. B., Moore V. C., Strano M. S., Haroz E. H., et al. (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593-596. - PubMed
-
- Weisman R. B., Bachilo S. M. (2003) Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett. 3, 1235-1238.