Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct;44(10):2191-2203.
doi: 10.1161/ATVBAHA.124.320938. Epub 2024 Jun 13.

PAI-1 Regulates the Cytoskeleton and Intrinsic Stiffness of Vascular Smooth Muscle Cells

Affiliations

PAI-1 Regulates the Cytoskeleton and Intrinsic Stiffness of Vascular Smooth Muscle Cells

Hekmat B Khoukaz et al. Arterioscler Thromb Vasc Biol. 2024 Oct.

Abstract

Background: Plasma concentration of PAI-1 (plasminogen activator inhibitor-1) correlates with arterial stiffness. Vascular smooth muscle cells (SMCs) express PAI-1, and the intrinsic stiffness of SMCs is a major determinant of total arterial stiffness. We hypothesized that PAI-1 promotes SMC stiffness by regulating the cytoskeleton and that pharmacological inhibition of PAI-1 decreases SMC and aortic stiffness.

Methods: PAI-039, a specific inhibitor of PAI-1, and small interfering RNA were used to inhibit PAI-1 expression in cultured human SMCs. Effects of PAI-1 inhibition on SMC stiffness, F-actin (filamentous actin) content, and cytoskeleton-modulating enzymes were assessed. WT (wild-type) and PAI-1-deficient murine SMCs were used to determine PAI-039 specificity. RNA sequencing was performed to determine the effects of PAI-039 on SMC gene expression. In vivo effects of PAI-039 were assessed by aortic pulse wave velocity.

Results: PAI-039 significantly reduced intrinsic stiffness of human SMCs, which was accompanied by a significant decrease in cytoplasmic F-actin content. PAI-1 gene knockdown also decreased cytoplasmic F-actin. PAI-1 inhibition significantly increased the activity of cofilin, an F-actin depolymerase, in WT murine SMCs, but not in PAI-1-deficient SMCs. RNA-sequencing analysis suggested that PAI-039 upregulates AMPK (AMP-activated protein kinase) signaling in SMCs, which was confirmed by Western blotting. Inhibition of AMPK prevented activation of cofilin by PAI-039. In mice, PAI-039 significantly decreased aortic stiffness and tunica media F-actin content without altering the elastin or collagen content.

Conclusions: PAI-039 decreases intrinsic SMC stiffness and cytoplasmic stress fiber content. These effects are mediated by AMPK-dependent activation of cofilin. PAI-039 also decreases aortic stiffness in vivo. These findings suggest that PAI-1 is an important regulator of the SMC cytoskeleton and that pharmacological inhibition of PAI-1 has the potential to prevent and treat cardiovascular diseases involving arterial stiffening.

Keywords: RNA, small interfering; actin depolymerizing factors; collagen; gene expression; plasminogen activator inhibitor 1; sequence analysis, RNA; vascular stiffness.

PubMed Disclaimer

Conflict of interest statement

None.

Comment in

  • Targeting Vascular Stiffness.
    Mack CP. Mack CP. Arterioscler Thromb Vasc Biol. 2024 Oct;44(10):2204-2206. doi: 10.1161/ATVBAHA.124.321334. Epub 2024 Aug 8. Arterioscler Thromb Vasc Biol. 2024. PMID: 39114918 No abstract available.

Similar articles

Cited by

References

    1. Lacolley P, Regnault V, Segers P, Laurent S. Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiol Rev. 2017;97:1555–1617. doi: 10.1152/physrev.00003.2017 - DOI - PubMed
    1. Zhou RH, Vendrov AE, Tchivilev I, Niu XL, Molnar KC, Rojas M, Carter JD, Tong H, Stouffer GA, Madamanchi NR, et al. Mitochondrial oxidative stress in aortic stiffening with age: the role of smooth muscle cell function. Arterioscler Thromb Vasc Biol. 2012;32:745–755. doi: 10.1161/atvbaha.111.243121 - DOI - PMC - PubMed
    1. Kohn JC, Lampi MC, Reinhart-King CA. Age-related vascular stiffening: causes and consequences. Front Genet. 2015;6:112. doi: 10.3389/fgene.2015.00112 - DOI - PMC - PubMed
    1. Icard-Arcizet D, Cardoso O, Richert A, Henon S. Cell stiffening in response to external stress is correlated to actin recruitment. Biophys J. 2008;94:2906–2913. doi: 10.1529/biophysj.107.118265 - DOI - PMC - PubMed
    1. Qiu H, Zhu Y, Sun Z, Trzeciakowski JP, Gansner M, Depre C, Resuello RR, Natividad FF, Hunter WC, Genin GM, et al. Short communication: vascular smooth muscle cell stiffness as a mechanism for increased aortic stiffness with aging. Circ Res. 2010;107:615–619. doi: 10.1161/circresaha.110.221846 - DOI - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources