Active site of triosephosphate isomerase: in vitro mutagenesis and characterization of an altered enzyme
- PMID: 3887397
- PMCID: PMC397539
- DOI: 10.1073/pnas.82.8.2272
Active site of triosephosphate isomerase: in vitro mutagenesis and characterization of an altered enzyme
Abstract
We have replaced the glutamic acid-165 at the active site of chicken triosephosphate isomerase with an aspartic acid residue using site-directed mutagenesis. Expression of the mutant protein in a strain of Escherichia coli that lacks the bacterial isomerase results in a complementation phenotype that is intermediate between strains that have no isomerase and strains that produce either the wild-type chicken enzyme or the native E. coli isomerase. The value of kcat for the purified mutant enzyme when glyceraldehyde 3-phosphate is the substrate is 1/1500th that of the wild-type enzyme, and the Km is decreased by a factor of 3.6. With dihydroxyacetone phosphate as substrate, the kcat value is 1/240th that of the wild-type enzyme, and Km is 2 times higher. The value of Ki for a competitive inhibitor, phosphoglycolate, is the same for the mutant and wild-type enzymes, at 2 X 10(-5) M. By treating the enzyme-catalyzed isomerization as a simple three step process and assuming that substrate binding is diffusion limited, it is evident that the mutation of glutamic acid-165 to aspartic acid principally affects the free energy of the transition state(s) for the catalytic reaction itself.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
