Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Apr;31(2):174-189.
doi: 10.1089/ten.TEB.2024.0079. Epub 2024 Jul 8.

Biomimetic and Nonbiomimetic Approaches in Dura Substitutes: The Influence of Mechanical Properties

Affiliations
Review

Biomimetic and Nonbiomimetic Approaches in Dura Substitutes: The Influence of Mechanical Properties

Nathália Oderich Muniz et al. Tissue Eng Part B Rev. 2025 Apr.

Abstract

The dura mater, the furthest and strongest layer of the meninges, is crucial for protecting the brain and spinal cord. Its biomechanical behavior is vital, as any alterations can compromise biological functions. In recent decades, interest in the dura mater has increased due to the need for hermetic closure of dural defects prompting the development of several substitutes. Collagen-based dural substitutes are common commercial options, but they lack the complex biological and structural elements of the native dura mater, impacting regeneration and potentially causing complications like wound/postoperative infection and cerebrospinal fluid (CSF) leakage. To face this issue, recent tissue engineering approaches focus on creating biomimetic dura mater substitutes. The objective of this review is to discuss whether mimicking the mechanical properties of native tissue or ensuring high biocompatibility and bioactivity is more critical in developing effective dural substitutes, or if both aspects should be systematically linked. After a brief description of the properties and architecture of the native cranial dura, we describe the advantages and limitations of biomimetic dura mater substitutes to better understand their relevance. In particular, we consider biomechanical properties' impact on dura repair's effectiveness. Finally, the obstacles and perspectives for developing the ideal dural substitute are explored.

Keywords: artificial substitutes; biomechanical properties; dura mater; dural graft; meninges.

PubMed Disclaimer

Similar articles

LinkOut - more resources