Exact Distribution of the Quantal Content in Synaptic Transmission
- PMID: 38877921
- PMCID: PMC11571698
- DOI: 10.1103/PhysRevLett.132.228401
Exact Distribution of the Quantal Content in Synaptic Transmission
Abstract
During electrochemical signal transmission through synapses, triggered by an action potential (AP), a stochastic number of synaptic vesicles (SVs), called the "quantal content," release neurotransmitters in the synaptic cleft. It is widely accepted that the quantal content probability distribution is a binomial based on the number of ready-release SVs in the presynaptic terminal. But the latter number itself fluctuates due to its stochastic replenishment, hence the actual distribution of quantal content is unknown. We show that exact distribution of quantal content can be derived for general stochastic AP inputs in the steady state. For fixed interval AP train, we prove that the distribution is a binomial, and corroborate our predictions by comparison with electrophysiological recordings from MNTB-LSO synapses of juvenile mice. For a Poisson train, we show that the distribution is nonbinomial. Moreover, we find exact moments of the quantal content in the Poisson and other general cases, which may be used to obtain the model parameters from experiments.
Figures





Similar articles
-
Inferring synaptic transmission from the stochastic dynamics of the quantal content: An analytical approach.PLoS Comput Biol. 2025 May 13;21(5):e1013067. doi: 10.1371/journal.pcbi.1013067. eCollection 2025 May. PLoS Comput Biol. 2025. PMID: 40359429 Free PMC article.
-
Considerable differences between auditory medulla, auditory midbrain, and hippocampal synapses during sustained high-frequency stimulation: Exceptional vesicle replenishment restricted to sound localization circuit.Hear Res. 2019 Sep 15;381:107771. doi: 10.1016/j.heares.2019.07.008. Epub 2019 Jul 16. Hear Res. 2019. PMID: 31394425 Free PMC article.
-
Combining principal component and spectral analyses with the method of moments in studies of quantal transmission.J Neurosci Methods. 2003 Dec 15;130(2):173-99. doi: 10.1016/j.jneumeth.2003.09.022. J Neurosci Methods. 2003. PMID: 14667545
-
Estimation of quantal parameters at the calyx of Held synapse.Neurosci Res. 2002 Dec;44(4):343-56. doi: 10.1016/s0168-0102(02)00174-8. Neurosci Res. 2002. PMID: 12445623 Review.
-
Data-driven modeling of synaptic transmission and integration.Prog Mol Biol Transl Sci. 2014;123:305-50. doi: 10.1016/B978-0-12-397897-4.00004-8. Prog Mol Biol Transl Sci. 2014. PMID: 24560150 Free PMC article. Review.
Cited by
-
A differentiable Gillespie algorithm for simulating chemical kinetics, parameter estimation, and designing synthetic biological circuits.Elife. 2025 Mar 17;14:RP103877. doi: 10.7554/eLife.103877. Elife. 2025. PMID: 40095799 Free PMC article.
-
A differentiable Gillespie algorithm for simulating chemical kinetics, parameter estimation, and designing synthetic biological circuits.bioRxiv [Preprint]. 2025 Jan 21:2024.07.07.602397. doi: 10.1101/2024.07.07.602397. bioRxiv. 2025. Update in: Elife. 2025 Mar 17;14:RP103877. doi: 10.7554/eLife.103877. PMID: 39026759 Free PMC article. Updated. Preprint.
-
A differentiable Gillespie algorithm for simulating chemical kinetics, parameter estimation, and designing synthetic biological circuits.ArXiv [Preprint]. 2025 Jan 21:arXiv:2407.04865v3. ArXiv. 2025. Update in: Elife. 2025 Mar 17;14:RP103877. doi: 10.7554/eLife.103877. PMID: 39398212 Free PMC article. Updated. Preprint.
-
Cyclo-stationary distributions of mRNA and Protein counts for random cell division times.bioRxiv [Preprint]. 2025 Jun 8:2025.06.06.658238. doi: 10.1101/2025.06.06.658238. bioRxiv. 2025. PMID: 40502203 Free PMC article. Preprint.
-
Inferring synaptic transmission from the stochastic dynamics of the quantal content: An analytical approach.PLoS Comput Biol. 2025 May 13;21(5):e1013067. doi: 10.1371/journal.pcbi.1013067. eCollection 2025 May. PLoS Comput Biol. 2025. PMID: 40359429 Free PMC article.
References
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources