Protective effects of Amauroderma rugosum on dextran sulfate sodium-induced ulcerative colitis through the regulation of macrophage polarization and suppression of oxidative stress
- PMID: 38878683
- DOI: 10.1016/j.biopha.2024.116901
Protective effects of Amauroderma rugosum on dextran sulfate sodium-induced ulcerative colitis through the regulation of macrophage polarization and suppression of oxidative stress
Abstract
Background: Amauroderma rugosum (AR) is a medicinal mushroom commonly used to treat inflammation, gastric disorders, epilepsy, and cancers due to its remarkable anti-inflammatory and anti-oxidative properties. This study was designed to evaluate the pharmacological effects of AR and its underlying mechanism of action against ulcerative colitis (UC) in vitro and in vivo.
Methods: A UC mouse model was established by administration of dextran sulfate sodium (DSS). AR extract was administered intragastrically to mice for 7 days. At the end of the experiment, histopathology, macrophage phenotype, oxidative stress, and inflammatory status were examined in vivo. Furthermore, RAW 264.7, THP-1, and Caco-2 cells were used to elucidate the mechanism of action of AR in vitro.
Results: AR extract (0.5-2 mg/mL) significantly suppressed lipopolysaccharide (LPS) and interferon-gamma (IFN-γ)-induced M1 macrophage (pro-inflammatory) polarization in both RAW 264.7 and THP-1 cells. LPS-induced pro-inflammatory mediators (nitric oxide, TNF-α, IL-1β, MCP-1, and IL-6) were reduced by AR extract in a concentration-dependent manner. Similarly, AR extract downregulated MAPK signaling activity in LPS-stimulated RAW 264.7 cells. AR extract elicited a concentration-dependent increase in the mRNA expression of M2 (anti-inflammatory) phenotype markers (CD206, Arg-1, Fizz-1, and Ym-1) in RAW 264.7 cells. Moreover, AR extract suppressed DSS-induced ROS generation and mitochondrial dysfunction in Caco-2 cells. The in vivo experiment revealed that AR extract (200 mg/kg) increased colon length compared to the DSS-treated group. In addition, disease activity index, spleen ratio, body weight, oxidative stress, and colonic inflammation were markedly improved by AR treatment in DSS-induced UC mice. Finally, AR suppressed M1 and promoted M2 macrophage polarization in UC mice.
Conclusion: The AR extract protected against DSS-induced UC by regulating macrophage polarization and suppressing oxidative stress. These valuable findings suggest that adequate intake of AR can prevent and/or treat UC.
Keywords: Amauroderma rugosum; Macrophage polarization; Ulcerative colitis; oxidative stress.
Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous