Step-by-step protocol for isolating the entire repertoire of human first trimester placental cells
- PMID: 38879406
- DOI: 10.1016/j.placenta.2024.06.006
Step-by-step protocol for isolating the entire repertoire of human first trimester placental cells
Abstract
Correct placental development and function are essential for adapting the mother to the ongoing pregnancy and the wellbeing of the growing fetus; however, underlying processes are still poorly understood. Only limited structural and cellular placental features are shared among species hence requiring reliable human in-vitro models. Recently established trophoblast stem cell and organoid models significantly improved placental research; however, the human placenta constitutes a multi-cellular organ with tightly orchestrated, cellular and molecular networks between trophoblasts (TBs) and villous core cells (VCCs) vital for correct placentation. The establishment of co-culture models is accordingly the logical consequence to investigate TB and VCC interactions, but first requires efficient purification of ideally donor-matched placental cell types. We herein present a meticulously-tailored protocol based on four sequential digestion steps (d-steps) with varying enzyme compositions and digestion mode and length, gently releasing cells layer-by-layer from human first trimester placentae (8 - 9th week of gestation). Using immunofluorescence and flow cytometry, we analyzed the tissue fragments and digestion solutions after every d-step and collected data on individual digestion progress as well as cell viability, counts, and specifications. D-step 1 revealed a significantly low viability and was mainly composed of syncytial fragments, extravillous trophoblasts EVTs, and maternal leukocytes. D-step 2 and 3, comprising high viability predominantly contained TBs (90-99 %) with a significant enrichment of EVTs in d-step 2 and an almost pure villous cytotrophoblast (vCTB) population in d-step 3. D-step 4 finally enabled isolating fetal VCCs consisting of endothelial cells, fibroblasts, and Hofbauer cells. Interestingly, maternal leukocytes were detected in d-step 1 and 2 but completely absent from d-step 3 and 4 revealing pure fetal cell populations. In sum, we present a detailed guideline for stepwise isolating selected placental cell types suitable for further studies and co-culture models investigating TB and VCC interactions involved in early placental development.
Keywords: Cell isolation; Human placenta; Trophoblasts; Villous stromal cells.
Copyright © 2024. Published by Elsevier Ltd.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.
Similar articles
-
Isolation and characterisation of a novel trophoblast side-population from first trimester placentae.Reproduction. 2015 Nov;150(5):449-62. doi: 10.1530/REP-14-0646. Epub 2015 Aug 6. Reproduction. 2015. PMID: 26248480
-
HLA Class I protein expression in the human placenta.Early Pregnancy (Cherry Hill). 2001 Jan;5(1):67-9. Early Pregnancy (Cherry Hill). 2001. PMID: 11753519
-
Side-Population Trophoblasts Exhibit the Differentiation Potential of a Trophoblast Stem Cell Population, Persist to Term, and are Reduced in Fetal Growth Restriction.Stem Cell Rev Rep. 2020 Aug;16(4):764-775. doi: 10.1007/s12015-020-09991-8. Stem Cell Rev Rep. 2020. PMID: 32548656
-
TGFβ signalling: a nexus between inflammation, placental health and preeclampsia throughout pregnancy.Hum Reprod Update. 2024 Jul 1;30(4):442-471. doi: 10.1093/humupd/dmae007. Hum Reprod Update. 2024. PMID: 38519450 Free PMC article. Review.
-
Culture of syncytiotrophoblast for the study of human placental transfer. Part I: Isolation and purification of cytotrophoblast.Placenta. 1997 Mar-Apr;18(2-3):93-8. doi: 10.1016/s0143-4004(97)90079-5. Placenta. 1997. PMID: 9089768 Review.
MeSH terms
LinkOut - more resources
Full Text Sources