Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024:1441:853-865.
doi: 10.1007/978-3-031-44087-8_52.

Molecular Pathways and Animal Models of Truncus Arteriosus

Affiliations
Review

Molecular Pathways and Animal Models of Truncus Arteriosus

Eleanor Gill et al. Adv Exp Med Biol. 2024.

Abstract

In normal cardiovascular development in birds and mammals, the outflow tract of the heart is divided into two distinct channels to separate the oxygenated systemic blood flow from the deoxygenated pulmonary circulation. When the process of outflow tract septation fails, a single common outflow vessel persists resulting in a serious clinical condition known as persistent truncus arteriosus or common arterial trunk. In this chapter, we will review molecular pathways and the cells that are known to play a role in the formation and development of the outflow tract and how genetic manipulation of these pathways in animal models can result in common arterial trunk.

Keywords: Common arterial trunk; Congenital heart defects; Extracellular matrix; FGF; Genetics; Model organisms; Neural crest cells; Persistent truncus arteriosus; TBX1; TGFβTransforming growth factors (TGFs)TGFß.

PubMed Disclaimer

References

    1. Anderson RH, Chaudhry B, Mohun TJ, Bamforth SD, Hoyland D, Phillips HM, et al. Normal and abnormal development of the intrapericardial arterial trunks in humans and mice. Cardiovasc Res. 2012;95(1):108–15. - PubMed
    1. Sizarov A, Lamers WH, Mohun TJ, Brown NA, Anderson RH, Moorman AF. Three-dimensional and molecular analysis of the arterial pole of the developing human heart. J Anat. 2012;220(4):336–49. - PubMed - PMC
    1. Bamforth SD, Braganca J, Eloranta JJ, Murdoch JN, Marques FI, Kranc KR, et al. Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nat Genet. 2001;29(4):469–74. - PubMed
    1. Sanchez J, Miyake R, Cheng A, Liu T, Iseki S, Kume T. Conditional inactivation of Foxc1 and Foxc2 in neural crest cells leads to cardiac abnormalities. Genesis. 2020;58(7):e23364. - PubMed - PMC
    1. Wang B, Weidenfeld J, Lu MM, Maika S, Kuziel WA, Morrisey EE, et al. Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation. Development. 2004;131(18):4477–87. - PubMed

MeSH terms

LinkOut - more resources