Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec;46(12):9052-9071.
doi: 10.1109/TPAMI.2024.3415112. Epub 2024 Nov 6.

A Survey on Self-Supervised Learning: Algorithms, Applications, and Future Trends

A Survey on Self-Supervised Learning: Algorithms, Applications, and Future Trends

Jie Gui et al. IEEE Trans Pattern Anal Mach Intell. 2024 Dec.

Abstract

Deep supervised learning algorithms typically require a large volume of labeled data to achieve satisfactory performance. However, the process of collecting and labeling such data can be expensive and time-consuming. Self-supervised learning (SSL), a subset of unsupervised learning, aims to learn discriminative features from unlabeled data without relying on human-annotated labels. SSL has garnered significant attention recently, leading to the development of numerous related algorithms. However, there is a dearth of comprehensive studies that elucidate the connections and evolution of different SSL variants. This paper presents a review of diverse SSL methods, encompassing algorithmic aspects, application domains, three key trends, and open research questions. First, we provide a detailed introduction to the motivations behind most SSL algorithms and compare their commonalities and differences. Second, we explore representative applications of SSL in domains such as image processing, computer vision, and natural language processing. Lastly, we discuss the three primary trends observed in SSL research and highlight the open questions that remain.

PubMed Disclaimer

Similar articles

Cited by