Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Sep;77(9):612-626.
doi: 10.1038/s41429-024-00748-w. Epub 2024 Jun 17.

Reversal of carbapenem resistance in Pseudomonas aeruginosa by camelid single domain antibody fragment (VHH) against the C4-dicarboxylate transporter

Affiliations

Reversal of carbapenem resistance in Pseudomonas aeruginosa by camelid single domain antibody fragment (VHH) against the C4-dicarboxylate transporter

Anil Kumar Nagraj et al. J Antibiot (Tokyo). 2024 Sep.

Abstract

Antimicrobial resistance is emerging as the new healthcare crisis necessitating the development of newer classes of drugs using non-traditional approaches. Pseudomonas aeruginosa, one of the most common pathogens involved in nosocomial infections, is extremely difficult to treat even with the last resort frontline drug, the carbapenems. As the pathogen has the ability to acquire resistance to new small-molecule antibiotics, being deployed, a novel biological approach has been tried using antibody fragments in combination with carbapenems and β-lactams as adjunct therapy for an enduring solution to the problem. In this study, we developed a camelid antibody fragment (VHH) library against P. aeruginosa and isolated a highly potent hit, PsC23. Mass spectrometry identified the target to be a component of the C4-dicarboxylate transporter that feeds metabolites to the glyoxylate shunt particularly under conditions of oxidative stress. PsC23 is bacteriostatic at a concentration of 1.66 µM (25 µg ml-1) and shows a synergistic effect with both the classes of drugs at an effective concentration of 100-200 nM (1.5-3.0 µg ml-1) when co administered with them. In combination with meropenem the VHH completely cleared the infection from a neutropenic mouse with a carbapenem-resistant P. aeruginosa systemic infection. Blocking the glyoxylate shunt by PsC23 resulted in disruption of energy transduction due to a respiratory shift to the oxygen-depleted TCA cycle causing inhibition of efflux and increased free radical generation from carbapenems and β-lactams exerting a strong bactericidal effect that reversed the resistance to multiple unrelated drugs.

PubMed Disclaimer

References

    1. De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev. 2020;33. https://doi.org/10.1128/CMR.00181-19
    1. Centers for Disease Control and Prevention (U.S.). Antibiotic resistance threats in the United States, 2019. Centers for Disease Control and Prevention (U.S.); 2019.
    1. Bhagirath AY, Li Y, Somayajula D, Dadashi M, Badr S, Duan K. Cystic fibrosis lung environment and Pseudomonas aeruginosa infection. BMC Pulm Med. 2016;16:174. - DOI - PubMed - PMC
    1. Sivanmaliappan TS, Sevanan M. Antimicrobial susceptibility patterns of pseudomonas aeruginosa from diabetes patients with foot ulcers. Int J Microbiol. 2011;2011:605195. - DOI - PubMed - PMC
    1. Pachori P, Gothalwal R, Gandhi P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis. 2019;6:109–19. - DOI - PubMed - PMC

Publication types

MeSH terms