Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul;9(7):1828-1841.
doi: 10.1038/s41564-024-01719-5. Epub 2024 Jun 17.

Bacteriophage protein Dap1 regulates evasion of antiphage immunity and Pseudomonas aeruginosa virulence impacting phage therapy in mice

Affiliations

Bacteriophage protein Dap1 regulates evasion of antiphage immunity and Pseudomonas aeruginosa virulence impacting phage therapy in mice

Shuai Le et al. Nat Microbiol. 2024 Jul.

Abstract

Bacteriophages have evolved diverse strategies to overcome host defence mechanisms and to redirect host metabolism to ensure successful propagation. Here we identify a phage protein named Dap1 from Pseudomonas aeruginosa phage PaoP5 that both modulates bacterial host behaviour and contributes to phage fitness. We show that expression of Dap1 in P. aeruginosa reduces bacterial motility and promotes biofilm formation through interference with DipA, a c-di-GMP phosphodiesterase, which causes an increase in c-di-GMP levels that trigger phenotypic changes. Results also show that deletion of dap1 in PaoP5 significantly reduces genome packaging. In this case, Dap1 directly binds to phage HNH endonuclease, prohibiting host Lon-mediated HNH degradation and promoting phage genome packaging. Moreover, PaoP5Δdap1 fails to rescue P. aeruginosa-infected mice, implying the significance of dap1 in phage therapy. Overall, these results highlight remarkable dual functionality in a phage protein, enabling the modulation of host behaviours and ensuring phage fitness.

PubMed Disclaimer

References

    1. Smith, W. P. J., Wucher, B. R., Nadell, C. D. & Foster, K. R. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat. Rev. Microbiol. 21, 519–534 (2023). - PubMed - DOI
    1. Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020). - PubMed - DOI
    1. Hsueh, B. Y. et al. Phage defence by deaminase-mediated depletion of deoxynucleotides in bacteria. Nat. Microbiol. 7, 1210–1220 (2022). - PubMed - PMC - DOI
    1. Tock, M. R. & Dryden, D. T. The biology of restriction and anti-restriction. Curr. Opin. Microbiol. 8, 466–472 (2005). - PubMed - DOI
    1. Samson, J. E., Magadán, A. H., Sabri, M. & Moineau, S. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11, 675–687 (2013). - PubMed - DOI

MeSH terms

LinkOut - more resources