Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul 2;18(26):16832-16841.
doi: 10.1021/acsnano.4c02496. Epub 2024 Jun 18.

Programmable Interfacial Band Configuration in WS2/Bi2O2Se Heterojunctions

Affiliations

Programmable Interfacial Band Configuration in WS2/Bi2O2Se Heterojunctions

Hanwen Zhang et al. ACS Nano. .

Abstract

van der Waals heterojunctions based on transition-metal dichalcogenides (TMDs) offer advanced strategies for manipulating light-emitting and light-harvesting behaviors. A crucial factor determining the light-material interaction is in the band alignment at the heterojunction interface, particularly the distinctions between type-I and type-II alignments. However, altering the band alignment from one type to another without changing the constituent materials is exceptionally difficult. Here, utilizing Bi2O2Se with a thickness-dependent band gap as a bottom layer, we present an innovative strategy for engineering interfacial band configurations in WS2/Bi2O2Se heterojunctions. In particular, we achieve tuning of the band alignment from type-I (Bi2O2Se straddling WS2) to type-II and finally to type-I (WS2 straddling Bi2O2Se) by increasing the thickness of the Bi2O2Se bottom layer from monolayer to multilayer. We verified this band architecture conversion using steady-state and transient spectroscopy as well as density functional theory calculations. Using this material combination, we further design a sophisticated band architecture incorporating both type-I (WS2 straddles Bi2O2Se, fluorescence-quenched) and type-I (Bi2SeO5 straddles WS2, fluorescence-recovered) alignments in one sample through focused laser beam (FLB). By programming the FLB trajectory, we achieve a predesigned localized fluorescence micropattern on WS2 without changing its intrinsic atomic structure. This effective band architecture design strategy represents a significant leap forward in harnessing the potential of TMD heterojunctions for multifunctional photonic applications.

Keywords: 2D materials; band alignment; fluorescence design; heterojunctions; laser modification.

PubMed Disclaimer

LinkOut - more resources