Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2024 Jun 18;189(4):59.
doi: 10.1007/s11046-024-00865-y.

Comparative Transcriptome Analysis of T. rubrum, T. mentagrophytes, and M. gypseum Dermatophyte Biofilms in Response to Photodynamic Therapy

Affiliations
Comparative Study

Comparative Transcriptome Analysis of T. rubrum, T. mentagrophytes, and M. gypseum Dermatophyte Biofilms in Response to Photodynamic Therapy

Borui Chen et al. Mycopathologia. .

Abstract

Dermatophyte biofilms frequently count for inadequate responses and resistance to standard antifungal treatments, resulting in refractory chronic onychomycosis infection. Although antimicrobial photodynamic therapy (aPDT) has clinically proven to exert significant antifungal effects or even capable of eradicating dermatophyte biofilms, considerably less is known about the molecular mechanisms underlying aPDT and the potential dysregulation of signaling networks that could antagonize its action. The aim of this study is to elucidate the molecular mechanisms underlining aPDT combat against dermatophyte biofilm in recalcitrant onychomycosis and to decipher the potential detoxification processes elicited by aPDT, facilitating the development of more effective photodynamic interventions. We applied genome-wide comparative transcriptome analysis to investigate how aPDT disrupting onychomycosis biofilm formed by three distinct dermatophytes, including Trichophyton rubrum, Trichophyton mentagrophytes, and Microsporum gypseum, the most frequently occurring pathogenic species. In total, 352.13 Gb of clean data were obtained for the transcriptomes of dermatophyte biofilms with or without aPDT treatment, resulting in 2,422.42 million reads with GC content of 51.84%, covering 99.9%, 98.5% and 99.4% of annotated genes of T. rubrum, T. mentagrophytes, and M. gypseum, respectively. The genome-wide orthologous analysis identified 6624 transcribed single-copy orthologous genes in all three species, and 36.5%, 6.8% and 17.9% of which were differentially expressed following aPDT treatment. Integrative orthology analysis demonstrated the upregulation of oxidoreductase activities is a highly conserved detoxification signaling alteration in response to aPDT across all investigated dermatophyte biofilms. This study provided new insights into the molecular mechanisms underneath anti-dermatophyte biofilm effects of aPDT and successfully identified a conserved detoxification regulation upon the aPDT application.

Keywords: Comparative transcriptomics; Dermatophyte Biofilms; Detoxification; aPDT.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Martinez DA, Oliver BG, Graser Y, Goldberg JM, Li W, Martinez-Rossi NM, et al. Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. MBio. 2012;3(5):e00259-e312. https://doi.org/10.1128/mBio.00259-12 . - DOI - PubMed - PMC
    1. Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses. 2008;51(Suppl 4):2–15. https://doi.org/10.1111/j.1439-0507.2008.01606.x . - DOI - PubMed
    1. Moskaluk A, Darlington L, Kuhn S, Behzadi E, Gagne RB, Kozakiewicz CP, et al. Genetic Characterization of Microsporum canis clinical isolates in the United States. J Fungi (Basel). 2022;8(7):676. https://doi.org/10.3390/jof8070676 . - DOI - PubMed - PMC
    1. Achterman RR, White TC. A foot in the door for dermatophyte research. PLoS Pathog. 2012;8(3):e1002564. https://doi.org/10.1371/journal.ppat.1002564 . - DOI - PubMed - PMC
    1. Chen XQ, Zheng DY, Xiao YY, Dong BL, Cao CW, Ma L, et al. Aetiology of tinea capitis in China: a multicentre prospective study. Br J Dermatol. 2022;186(4):705–12. https://doi.org/10.1111/bjd.20875 . - DOI - PubMed

Publication types

Substances

Supplementary concepts

LinkOut - more resources