Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jun-Jul;150(1-2):1-11.
doi: 10.1016/0027-5107(85)90095-8.

Artificial intelligence and Bayesian decision theory in the prediction of chemical carcinogens

Artificial intelligence and Bayesian decision theory in the prediction of chemical carcinogens

H S Rosenkranz et al. Mutat Res. 1985 Jun-Jul.

Abstract

Two procedures for predicting the carcinogenicity of chemicals are described. One of these (CASE) is a self-learning artificial intelligence system that automatically recognizes activating and/or deactivating structural subunits of candidate chemicals and uses this to determine the probability that the test chemical is or is not a carcinogen. If the chemical is predicted to be carcinogen, CASE also projects its probable potency. The second procedure (CPBS) uses Bayesian decision theory to predict the potential carcinogenicity of chemicals based upon the results of batteries of short-term assays. CPBS is useful even if the test results are mixed (i.e. both positive and negative responses are obtained in different genotoxic assays). CPBS can also be used to identify highly predictive as well as cost-effective batteries of assays. For illustrative purposes the ability of CASE and CPBS to predict the carcinogenicity of a carcinogenic and a non-carcinogenic polycyclic aromatic hydrocarbon is shown. The potential for using the two methods in tandem to increase reliability and decrease cost is presented.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources