Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun 14:51:e20243619.
doi: 10.1590/0100-6991e-20243619-en. eCollection 2024.

Development and mechanical-functional validation of 3D-printed laparoscopic forceps

[Article in English, Portuguese]
Affiliations

Development and mechanical-functional validation of 3D-printed laparoscopic forceps

[Article in English, Portuguese]
Carlos Magno Queiroz DA Cunha et al. Rev Col Bras Cir. .

Abstract

Introduction: 3-dimensional printing has enabled the development of unique and affordable additive manufacturing, including the prototyping and production of surgical forceps. Objective: demonstrate the development, 3D printing and mechanical-functional validation of a laparoscopic grasping forceps.

Methods: the clamp was designed using a computer program and printed in 3 dimensions with polylactic acid (PLA) filament and added 5 screws for better leverage. Size and weight measurements were carried out, as well as mechanicalfunctional grip and rotation tests in the laboratory with a validated simulator.

Results: Called "Easylap", the clamp weighed 48 grams, measured 43cm and was printed in 8 pieces, taking an average of 12 hours to produce. It allowed the simulation of the functional characteristics of laparoscopic pressure forceps, in addition to the rotation and rack locking mechanism. However, its strength is reduced due to the material used.

Conclusion: It is possible to develop plastic laparoscopic grasping forceps through 3-dimensional printing.

Introdução:: a impressão em 3 dimensões permitiu o desenvolvimento de manufaturas aditivas únicas e acessíveis, inclusive na prototipagem e produção de pinças cirúrgicas. Objetivo: Demonstrar o desenvolvimento, a impressão em 3D e a validação mecânico-funcional de pinça laparoscópica do tipo apreensão.

Métodos:: a pinça foi desenhada em programa de computador e impressa em 3 dimensões com filamento de ácido poliláctico (PLA) e acrescida de 5 parafusos para melhor efeito de alavanca. Foram realizadas aferições de tamanho e peso, bem como testes mecânicos-funcionais de preensão e rotação em laboratório com simulador validado.

Resultados:: denominada “Easylap”, a pinça pesou 48 gramas, mediu 43 cm e foi impressa em 8 peças, levando em média 12 horas para sua produção. Ela permitiu a simulação das características funcionais de pinça laparoscópicas de apreensão, além de mecanismo de rotação e travamento por cremalheira. Porém sua força é reduzida devido ao material utilizado.

Conclusão:: é possível desenvolver pinça laparoscópica plástica de apreensão através de impressão em 3 dimensões.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest: no.

Figures

Figure 1
Figure 1. Digital design of the printed and assembled forceps.
Figure 2
Figure 2. Assembly of the forceps: Part 1 is fitted inside part 2. The ball of part 1 is fitted into part 3. With this assembly formed, parts 4 and 5 are fitted laterally at the proximal end and parts 6 and 7 at the distal end. Fitting part 8 at the proximal end is optional (rack).
Figure 3
Figure 3. Side view of forceps inserted into a laparoscopic simulator..
Figure 4
Figure 4. Forceps being used in a laparoscopic simulator.

Similar articles

References

    1. Liaw CY, Guvendiren M. Current and emerging applications of 3D printing in medicine. Biofabrication. 2017;9(2):024102–024102. doi: 10.1088/1758-5090/aa7279. - DOI - PubMed
    1. Zaidi S, Naik P, Ahmed S. Three-Dimensional printed instruments used in a Septoplasty A new paradigm in Surgery. Laryngoscope Investig Otolaryngol. 2021;6(4):613–618. doi: 10.1002/lio2.579. - DOI - PMC - PubMed
    1. Martelli N, Serrano C, van den Brink H, Pineau J, Prognon P, Borget I, et al. Advantages and disadvantages of 3-dimensional printing in surgery A systematic review. Surgery. 2016;159(6):1485–1500. doi: 10.1016/j.surg.2015.12.017. - DOI - PubMed
    1. George M, Aroom KR, Hawes HG, Gill BS, Love J. 3D Printed Surgical Instruments The Design and Fabrication Process. World J Surg. 2017;41(1):314–319. doi: 10.1007/s00268-016-3814-5. - DOI - PMC - PubMed
    1. Culmone C, Lussenburg K, Alkemade J, Smit G, Sakes A, Breedveld P. A Fully 3D-Printed Steerable Instrument for Minimally Invasive Surgery. Materials (Basel) 2021;14(24):7910–7910. doi: 10.3390/ma14247910. - DOI - PMC - PubMed

Publication types