Direct bandgap quantum wells in hexagonal Silicon Germanium
- PMID: 38898007
- PMCID: PMC11187182
- DOI: 10.1038/s41467-024-49399-3
Direct bandgap quantum wells in hexagonal Silicon Germanium
Abstract
Silicon is indisputably the most advanced material for scalable electronics, but it is a poor choice as a light source for photonic applications, due to its indirect band gap. The recently developed hexagonal Si1-xGex semiconductor features a direct bandgap at least for x > 0.65, and the realization of quantum heterostructures would unlock new opportunities for advanced optoelectronic devices based on the SiGe system. Here, we demonstrate the synthesis and characterization of direct bandgap quantum wells realized in the hexagonal Si1-xGex system. Photoluminescence experiments on hex-Ge/Si0.2Ge0.8 quantum wells demonstrate quantum confinement in the hex-Ge segment with type-I band alignment, showing light emission up to room temperature. Moreover, the tuning range of the quantum well emission energy can be extended using hexagonal Si1-xGex/Si1-yGey quantum wells with additional Si in the well. These experimental findings are supported with ab initio bandstructure calculations. A direct bandgap with type-I band alignment is pivotal for the development of novel low-dimensional light emitting devices based on hexagonal Si1-xGex alloys, which have been out of reach for this material system until now.
© 2024. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures
References
-
- Soref R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 2006;12:1678–1687. doi: 10.1109/JSTQE.2006.883151. - DOI
-
- Shi, Y. et al. Time-resolved photoluminescence characterization of ingaas/gaas nano-ridges monolithically grown on 300 mm si substrates. J. Appl. Phys.127, 101101 (2020).
-
- Wirths S, et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat. Photonics. 2015;9:88–92. doi: 10.1038/nphoton.2014.321. - DOI
-
- Elbaz A, et al. Ultra-low-threshold continuous-wave and pulsed lasing in tensile-strained GeSn alloys. Nat. Photonics. 2020;14:375–382. doi: 10.1038/s41566-020-0601-5. - DOI
Grants and funding
- 964191/EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- 964191/EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- 739.017.002/Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
- 964191/EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- OCENW.M.21.052/Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
- 024.002.033/Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
- 964191/EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- 964191/EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- 964191/EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- 739.017.002/Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
- 024.002.033/Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
LinkOut - more resources
Full Text Sources
Miscellaneous
