Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul;631(8020):319-327.
doi: 10.1038/s41586-024-07548-0. Epub 2024 Jun 19.

Direct radical functionalization of native sugars

Affiliations

Direct radical functionalization of native sugars

Yi Jiang et al. Nature. 2024 Jul.

Abstract

Naturally occurring (native) sugars and carbohydrates contain numerous hydroxyl groups of similar reactivity1,2. Chemists, therefore, rely typically on laborious, multi-step protecting-group strategies3 to convert these renewable feedstocks into reagents (glycosyl donors) to make glycans. The direct transformation of native sugars to complex saccharides remains a notable challenge. Here we describe a photoinduced approach to achieve site- and stereoselective chemical glycosylation from widely available native sugar building blocks, which through homolytic (one-electron) chemistry bypasses unnecessary hydroxyl group masking and manipulation. This process is reminiscent of nature in its regiocontrolled generation of a transient glycosyl donor, followed by radical-based cross-coupling with electrophiles on activation with light. Through selective anomeric functionalization of mono- and oligosaccharides, this protecting-group-free 'cap and glycosylate' approach offers straightforward access to a wide array of metabolically robust glycosyl compounds. Owing to its biocompatibility, the method was extended to the direct post-translational glycosylation of proteins.

PubMed Disclaimer

Conflict of interest statement

Patents have been filed that might afford authors royalties were they to be licensed.

Figures

Fig. 1
Fig. 1. Design of a protecting-group-free ‘cap and glycosylate’ blueprint for direct functionalization of native sugars to robust glycosides.
a, Enzymatic synthesis of C-glycosyl compounds. b, Challenges in the non-enzymatic chemical synthesis of unprotected C-glycosyl compounds. c, Our biomimetic approach to achieve site- and stereoselective anomeric functionalization of native sugars. R, functional group; LG, leaving group; B, base; NTP, nucleoside triphosphate; NDP, nucleoside diphosphate; Dha, dehydroalanine; C5F4N–SH, 2,3,5,6-tetrafluoropyridine-4-thiol; and C5F4N, 2,3,5,6-tetrafluoro-4-pyridyl.
Fig. 2
Fig. 2. Reaction development.
a, Selection of an appropriate activator for site-selective nucleophilic substitution. b, Identification of the most effective thioglycosyl donor for photoinduced cross-coupling. Yields were determined by 1H NMR analysis of the crude reaction mixture; yields in parentheses denote isolated yields. α:β Anomeric ratios were determined by 1H NMR and liquid chromatography–mass spectrometry (LC-MS) analysis. DMC, 2-chloro-1,3-dimethylimidazolinium chloride; CDMT, 2-chloro-4,6-dimethoxy-1,3,5-triazine; NMM, N-methylmorpholine; HE, Hantzsch ester (diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate); LED, light-emitting diode; RT, room temperature; and C6F4, 2,3,5,6-tetrafluorophenyl.
Fig. 3
Fig. 3. Mechanistic studies.
a, Different anomers of the thioglycoside intermediate eventually converge to a stereoisomerically pure C-glycosyl product. b, Radical trap experiment supports the intermediacy of a glycosyl radical species. c, UV–vis absorption spectra of reaction components in DMSO. d, Plausible mechanisms for native sugar activation and photoinduced cross-coupling. Yields were determined by 1H NMR analysis of the crude reaction mixture; yields in parentheses denote isolated yields. α:β Anomeric ratios were determined by 1H NMR and LC-MS analysis. ESI, electrospray ionization; E, electrophile.
Fig. 4
Fig. 4. Scope of the reaction with various native sugars.
Cross-coupling of mono- and oligosaccharides through unprotected glycosyl donors to directly afford unprotected C-alkyl glycosyl compounds. Yields were determined by 1H NMR analysis of the crude reaction mixture; yields in parentheses denote isolated yields. α:β Anomeric ratios were determined by 1H NMR and LC-MS analysis. Bn, benzyl.
Fig. 5
Fig. 5. Synthesis of diverse classes of robust glycosides and glycoconjugates.
a, C-Alkyl glycosyl compounds by reaction with I. b, C-Alkenyl and C-heteroaryl glycosyl compounds by reaction with II (for 44) and III (for 4547). c, Se-Glycosides by reaction with IV. d, S-Glycosides by reaction with V. Yields were determined by 1H NMR analysis of the crude reaction mixture; yields in parentheses denote isolated yields. α:β Anomeric ratios, diastereomeric ratios (dr) and E:Z ratios were determined by 1H NMR and LC-MS analysis. The asterisk indicates the value obtained as a 77:23 E:Z mixture. The dagger indicates d-galactose was used. Ar, aryl; X, halide; Ac, acetyl; Boc, tert-butyloxycarbonyl.
Fig. 6
Fig. 6. Application to direct post-translational chemical glycosylation of proteins.
Glycosylation of proteins by cross-coupling of representative native sugars (through capping as thioglycosyl donors) to afford unprotected C-alkyl glycosylproteins. Yields were determined by LC-MS analysis based on conversion of the protein substrate; yields in parentheses denote reactions with in situ-generated and unpurified thioglycosyl donors. Tris, 2-amino-2-(hydroxylmethyl)-propane-1,3-diol; B2Cat2, bis(catecholato)diboron; Man, d-mannosyl; Gal, d-galactosyl; GlcNAc, N-acetyl-d-glucosaminyl.
Extended Data Fig. 1
Extended Data Fig. 1. Preliminary results in photoinduced O-glycosylation.
Reaction scope using different sugars and phenols. Yields denote isolated yields. β:α Anomeric ratios were determined by 1H NMR and LC-MS analysis. TMEDA, tetramethylethylenediamine.

References

    1. Bati G, He JX, Pal KB, Liu XW. Stereo- and regioselective glycosylation with protection-less sugar derivatives: an alluring strategy to access glycans and natural products. Chem. Soc. Rev. 2019;48:4006–4018. doi: 10.1039/C8CS00905H. - DOI - PubMed
    1. Dimakos V, Taylor MS. Site-selective functionalization of hydroxyl groups in carbohydrate derivatives. Chem. Rev. 2018;118:11457–11517. doi: 10.1021/acs.chemrev.8b00442. - DOI - PubMed
    1. Volbeda, A. G., van der Marel, G. A. & Codée, J. D. C. in Protecting Groups Strategies and Applications in Carbohydrate Chemistry (ed. Vidal, S.) Ch. 1, 1–24 (Wiley-VCH, 2019).
    1. Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA. Glycosylation and the immune system. Science. 2001;291:2370–2376. doi: 10.1126/science.291.5512.2370. - DOI - PubMed
    1. Varki A. Biological roles of glycans. Glycobiology. 2017;27:3–49. doi: 10.1093/glycob/cww086. - DOI - PMC - PubMed

MeSH terms

LinkOut - more resources