Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul 1;63(26):12089-12099.
doi: 10.1021/acs.inorgchem.4c01076. Epub 2024 Jun 20.

The Chlorido-Bismuth Dication: A Potent Lewis Acid Captured in a Hepta-Coordinate Species with a Stereochemically Active Lone Pair

Affiliations

The Chlorido-Bismuth Dication: A Potent Lewis Acid Captured in a Hepta-Coordinate Species with a Stereochemically Active Lone Pair

Ahmed Fetoh et al. Inorg Chem. .

Abstract

The stabilization of simple, highly reactive cationic species in molecular complexes represents an important strategy to isolate and characterize compounds with uncommon or even unprecedented structural motifs and properties. Here we report the synthesis, isolation, and full characterization of chlorido-bismuth dications, stabilized only by monodentate dimethylsulfoxide (dmso) ligands: [BiCl(dmso)6][BF4]2 (1) and [BiCl(μ2-dmso)(dmso)4]2[BF4]4 (2). These compounds show unusual distorted pentagonal bipyramidal coordination geometries along with high Lewis acidities and have been analyzed by multinuclear NMR spectroscopy, elemental analysis, IR spectroscopy, single-crystal X-ray diffraction, and density functional theory calculations. Attempts to generate the bromido- and iodido-analogs gave dmso-stabilized tricationic bismuth species.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Chart 1
Chart 1. Dicationic Bismuth Complexes, Including Examples That Show (Weak) Bonding Interactions with Counteranions (Shown in Blue)a
Scheme 1
Scheme 1. (a) Synthesis of 1 from BiCl2Ph, HCl, and AgBF4; (b–d) Reactions of BiX3 with 2 equiv; AgBF4 (X = Cl, Br, I) to Give Compounds 24; L = Coordinated dmso; DMSO Is Used as a Solvent in All Reactions
Figure 1
Figure 1
Molecular structure of 1 in the solid state. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms, [BF4] counteranions, and split positions are omitted for clarity.
Figure 2
Figure 2
(a) Computed free energy of formation of distinct [BiCl(dmso)n]2+ at the DFT level of theory, indicating compound 1 (n = 6) as the most stable structure among those calculated. (b) Optimized structure of 1. (c) HOMO of compound 1 (isovalue: 0.03 au) and its Bi(p) character.
Figure 3
Figure 3
Most important NBO donor–acceptor contribution favoring the distorted structure of 1 in comparison to that where the Cl–Bi–O bond angle is kept at 180°. LP: valence lone pair; LV: lone vacant orbital. Corresponding NBO occupancies: 1.86 e; 0.31 e.
Figure 4
Figure 4
Molecular structure of 2 in the solid state. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms, [BF4] counteranions and split positions are omitted for clarity.
Figure 5
Figure 5
Molecular structure of [Bi(dmso)6(BF4)][BF4]2 (3) in the solid state. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms and split positions are omitted for clarity.
Figure 6
Figure 6
Molecular structure of [BiCl3(dmso)2] in the solid state. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

References

    1. Engesser T. A.; Lichtenthaler M. R.; Schleep M.; Krossing I. Reactive p-block cations stabilized by weakly coordinating anions. Chem. Soc. Rev. 2016, 45 (4), 789–899. 10.1039/C5CS00672D. - DOI - PMC - PubMed
    2. Strauss S. H. The search for larger and more weakly coordinating anions. Chem. Rev. 1993, 93 (3), 927–942. 10.1021/cr00019a005. - DOI
    3. Balasubramaniam S.; Kumar S.; Andrews A. P.; Varghese B.; Jemmis E. D.; Venugopal A. A dicationic bismuth (III) lewis acid: catalytic hydrosilylation of olefins. Eur. J. Inorg. Chem. 2019, 2019 (28), 3265–3269. 10.1002/ejic.201900459. - DOI
    4. Kannan R.; Balasubramaniam S.; Kumar S.; Chambenahalli R.; Jemmis E. D.; Venugopal A. Electrophilic organobismuth dication catalyzes carbonyl hydrosilylation. Chem.—Eur. J. 2020, 26 (56), 12717–12721. 10.1002/chem.202002006. - DOI - PubMed
    5. Gagnon A.; Dansereau J.; Le Roch A. Organobismuth Reagents: Synthesis, Properties and Applications in Organic Synthesis. Synthesis 2017, 49 (08), 1707–1745. 10.1055/s-0036-1589482. - DOI
    6. Ramler J.; Stoy A.; Preitschopf T.; Kettner J.; Fischer I.; Roling B.; Fantuzzi F.; Lichtenberg C. Dihalo bismuth cations: unusual coordination properties and inverse solvent effects in Lewis acidity. Chem. Commun. 2022, 58 (70), 9826–9829. 10.1039/D2CC04017D. - DOI - PubMed
    7. Oberdorf K.; Grenzer P.; Wieprecht N.; Ramler J.; Hanft A.; Rempel A.; Stoy A.; Radacki K.; Lichtenberg C. CH Activation of Cationic Bismuth Amides: Heteroaromaticity, Derivatization, and Lewis Acidity. Inorg. Chem. 2021, 60 (24), 19086–19097. 10.1021/acs.inorgchem.1c02911. - DOI - PubMed
    8. Weinert H. M.; Schulte Y.; Gehlhaar A.; Wölper C.; Haberhauer G.; Schulz S. Metal-coordinated distibene and dibismuthene dications – isoelectronic analogues of butadiene dications. Chem. Commun. 2023, 59 (50), 7755–7758. 10.1039/D3CC01844J. - DOI - PubMed
    9. Xu J.; Pan S.; Yao S.; Lorent C.; Teutloff C.; Zhang Z.; Fan J.; Molino A.; Krause K. B.; Schmidt J.; Bittl R.; Limberg C.; Zhao L.; Frenking G.; Driess M. Stabilizing Monoatomic Two-Coordinate Bismuth(I) and Bismuth(II) Using a Redox Noninnocent Bis(germylene) Ligand. J. Am. Chem. Soc. 2024, 146 (9), 6025–6036. 10.1021/jacs.3c13016. - DOI - PMC - PubMed
    1. Siddiqui M. M.; Sarkar S. K.; Nazish M.; Morganti M.; Köhler C.; Cai J.; Zhao L.; Herbst-Irmer R.; Stalke D.; Frenking G.; Roesky H. W. Donor-Stabilized Antimony(I) and Bismuth(I) Ions: Heavier Valence Isoelectronic Analogues of Carbones. J. Am. Chem. Soc. 2021, 143 (3), 1301–1306. 10.1021/jacs.0c12084. - DOI - PubMed
    2. Kumar V.; Gonnade R. G.; Yildiz C. B.; Majumdar M. Stabilization of the Elusive Antimony(I) Cation and Its Coordination Complexes with Transition Metals. Angew. Chem., Int. Ed. 2021, 60 (48), 25522–25529. 10.1002/anie.202111339. - DOI - PubMed
    1. Gilhula J. C.; Radosevich A. T. Tetragonal phosphorus(v) cations as tunable and robust catalytic Lewis acids. Chem. Sci. 2019, 10 (30), 7177–7182. 10.1039/C9SC02463H. - DOI - PMC - PubMed
    2. Warring L. S.; Walley J. E.; Dickie D. A.; Tiznado W.; Pan S.; Gilliard R. J. Lewis Superacidic Heavy Pnictaalkene Cations: Comparative Assessment of Carbodicarbene-Stibenium and Carbodicarbene-Bismuthenium Ions. Inorg. Chem. 2022, 61 (46), 18640–18652. 10.1021/acs.inorgchem.2c03135. - DOI - PubMed
    1. Walley J. E.; Warring L. S.; Wang G.; Dickie D. A.; Pan S.; Frenking G.; Gilliard R. J. Carbodicarbene bismaalkene cations: unravelling the complexities of carbene versus carbone in heavy pnictogen chemistry. Angew. Chem., Int. Ed. 2021, 60 (12), 6682–6690. 10.1002/anie.202014398. - DOI - PMC - PubMed
    2. Yang X.; Reijerse E. J.; Nöthling N.; SantaLucia D. J.; Leutzsch M.; Schnegg A.; Cornella J. Synthesis, Isolation, and Characterization of Two Cationic Organobismuth(II) Pincer Complexes Relevant in Radical Redox Chemistry. J. Am. Chem. Soc. 2023, 145 (10), 5618–5623. 10.1021/jacs.2c12564. - DOI - PMC - PubMed
    1. Volodarsky S.; Bawari D.; Dobrovetsky R. Dual Reactivity of a Geometrically Constrained Phosphenium Cation. Angew. Chem., Int. Ed. 2022, 61 (36), e20220840110.1002/anie.202208401. - DOI - PMC - PubMed
    2. Chulsky K.; Malahov I.; Bawari D.; Dobrovetsky R. Metallomimetic Chemistry of a Cationic, Geometrically Constrained Phosphine in the Catalytic Hydrodefluorination and Amination of Ar–F Bonds. J. Am. Chem. Soc. 2023, 145 (6), 3786–3794. 10.1021/jacs.2c13318. - DOI - PMC - PubMed
    3. Kundu S. Pincer-Type Ligand-Assisted Catalysis and Small-Molecule Activation by non-VSEPR Main-Group Compounds. Chem. - Asian J. 2020, 15 (20), 3209–3224. 10.1002/asia.202000800. - DOI - PubMed
    4. Oberdorf K.; Lichtenberg C. Small molecule activation by well-defined compounds of heavy p-block elements. Chem. Commun. 2023, 59 (52), 8043–8058. 10.1039/D3CC02190D. - DOI - PubMed
    5. Oberdorf K.; Hanft A.; Xie X.; Bickelhaupt F. M.; Poater J.; Lichtenberg C. Insertion of CO2 and CS2 into Bi–N bonds enables catalyzed CH-activation and light-induced bismuthinidene transfer. Chem. Sci. 2023, 14 (19), 5214–5219. 10.1039/D3SC01635H. - DOI - PMC - PubMed
    6. Ramler J.; Poater J.; Hirsch F.; Ritschel B.; Fischer I.; Bickelhaupt F. M.; Lichtenberg C. Carbon monoxide insertion at a heavy p-block element: unprecedented formation of a cationic bismuth carbamoyl. Chem. Sci. 2019, 10 (15), 4169–4176. 10.1039/C9SC00278B. - DOI - PMC - PubMed