Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Sep:113:151-157.
doi: 10.1016/j.gaitpost.2024.06.005. Epub 2024 Jun 19.

Selective voluntary motor control influences knee joint torque, work and power in children with spastic cerebral palsy

Affiliations
Free article

Selective voluntary motor control influences knee joint torque, work and power in children with spastic cerebral palsy

Eileen G Fowler et al. Gait Posture. 2024 Sep.
Free article

Abstract

Background: Children with spastic cerebral palsy (CP) have damage to the corticospinal tracts that are responsible for selective motor control (SMC). Force, velocity and timing of joint movement are related biomechanical features controlled by the corticospinal tracts (CSTs) that are important for skilled movement.

Research question: Does SMC influence knee joint biomechanics in spastic CP?

Methods: In this prospective study, relationships between SMC and knee biomechanics (peak torque, total work, average power) across a range of velocities (0-300 deg/s) were assessed using an isokinetic dynamometer in 23 children with spastic CP. SMC was assessed using Selective Control Assessment of the Lower Extremity (SCALE). Logistic and linear regression models were used to evaluate relationships between SCALE and biomechanical measures.

Results: The ability to produce knee torque diminished with increasing velocity for both Low (0-4 points) and High (5-10 points) SCALE limb score groups (p < 0.01). More knees in the High group produced extension torque at 300 deg/s (p < 0.05) and flexion torque at 30, 90,180, 240 and 300 deg/s (p < 0.05). The ability to produce torque markedly decreased above 180 deg/s for Low group flexion. For knees that produced torque, significant positive correlations between SCALE limb scores and joint torque (0 and 120 deg/s), work (120 deg/s) and power (120 deg/s) were found (p < 0.05). Greater knee torque, work and power for the High group was found for the extensors at most velocities and the flexors for up to 120 deg/s (p < 0.05). Few Low group participants generated knee flexor torque above 120 deg/s limiting comparisons.

Significance: Biomechanical impairments found for children with low SMC are concerning as skilled movements during gait, play and sport activities occur at high velocities. Differences in SMC should be considered when designing individualized assessments and interventions.

Keywords: Power; Selective motor control; Spastic cerebral palsy; Torque; Velocity; Work.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.