This is a preprint.
Astrocytes control quiescent NSC reactivation via GPCR signaling-mediated F-actin remodeling
- PMID: 38903085
- PMCID: PMC11188063
- DOI: 10.1101/2024.03.11.584337
Astrocytes control quiescent NSC reactivation via GPCR signaling-mediated F-actin remodeling
Update in
-
Astrocytes control quiescent NSC reactivation via GPCR signaling-mediated F-actin remodeling.Sci Adv. 2024 Jul 26;10(30):eadl4694. doi: 10.1126/sciadv.adl4694. Epub 2024 Jul 24. Sci Adv. 2024. PMID: 39047090 Free PMC article.
Abstract
The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine F-actin structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of Mrtf, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G-protein-coupled receptor (GPCR) Smog, G-protein αq subunit, Rho1 GTPase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand Fog to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, a NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.
Publication types
LinkOut - more resources
Full Text Sources