Toward developing human organs via embryo models and chimeras
- PMID: 38906095
- PMCID: PMC11239105
- DOI: 10.1016/j.cell.2024.05.027
Toward developing human organs via embryo models and chimeras
Abstract
Developing functional organs from stem cells remains a challenging goal in regenerative medicine. Existing methodologies, such as tissue engineering, bioprinting, and organoids, only offer partial solutions. This perspective focuses on two promising approaches emerging for engineering human organs from stem cells: stem cell-based embryo models and interspecies organogenesis. Both approaches exploit the premise of guiding stem cells to mimic natural development. We begin by summarizing what is known about early human development as a blueprint for recapitulating organogenesis in both embryo models and interspecies chimeras. The latest advances in both fields are discussed before highlighting the technological and knowledge gaps to be addressed before the goal of developing human organs could be achieved using the two approaches. We conclude by discussing challenges facing embryo modeling and interspecies organogenesis and outlining future prospects for advancing both fields toward the generation of human tissues and organs for basic research and translational applications.
Keywords: blastocyst complementation; extraembryonic endoderm cells; hypoblast stem cells; interspecies chimeras; interspecies organogenesis; organ engineering; pluripotent stem cells; stem cell-based embryo models; trophoblast stem cells.
Copyright © 2024 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests The authors declare no competing interests.
Figures




Similar articles
-
Blastocyst complementation: current progress and future directions in xenogeneic organogenesis.Stem Cell Res Ther. 2025 Jun 23;16(1):321. doi: 10.1186/s13287-025-04426-y. Stem Cell Res Ther. 2025. PMID: 40551151 Free PMC article. Review.
-
Recent advances in interspecies chimeras and organogenesis.Curr Opin Genet Dev. 2025 Aug;93:102368. doi: 10.1016/j.gde.2025.102368. Epub 2025 Jun 4. Curr Opin Genet Dev. 2025. PMID: 40480042 Review.
-
Assembly of complete mouse embryo models from embryonic and induced stem cell types in vitro.Nat Protoc. 2023 Dec;18(12):3662-3689. doi: 10.1038/s41596-023-00891-y. Epub 2023 Oct 11. Nat Protoc. 2023. PMID: 37821625 Free PMC article. Review.
-
Mini-organs and early embryos in vitro: what is at stake?C R Biol. 2025 Jul 23;348:159-166. doi: 10.5802/crbiol.185. C R Biol. 2025. PMID: 40698845 Review.
-
Nanomedicine-Driven Approaches for Kartogenin Delivery: Advancing Chondrogenic Differentiation and Cartilage Regeneration in Tissue Engineering.Int J Nanomedicine. 2025 Jun 13;20:7443-7468. doi: 10.2147/IJN.S525580. eCollection 2025. Int J Nanomedicine. 2025. PMID: 40535835 Free PMC article. Review.
Cited by
-
Stem cell-based embryo models: The 2021 ISSCR stem cell guidelines revisited.Stem Cell Reports. 2025 Jun 10;20(6):102514. doi: 10.1016/j.stemcr.2025.102514. Stem Cell Reports. 2025. PMID: 40499509 Free PMC article. Review.
-
Pluripotent cell states and fates in human embryo models.Development. 2025 Apr 1;152(7):dev204565. doi: 10.1242/dev.204565. Epub 2025 Apr 2. Development. 2025. PMID: 40171916 Review.
-
Derivation of resident macrophages and construction of tumor microenvironment in Flk-1-knockout chimeric mice produced via blastocyst complementation.Sci Rep. 2025 Jul 29;15(1):27665. doi: 10.1038/s41598-025-12571-w. Sci Rep. 2025. PMID: 40730607 Free PMC article.
-
Stem cell-based human embryo models: current knowledge and open questions.Stem Cell Res Ther. 2025 Aug 29;16(1):471. doi: 10.1186/s13287-025-04581-2. Stem Cell Res Ther. 2025. PMID: 40877982 Free PMC article. Review.
-
Interspecies Blastocyst Complementation and the Genesis of Chimeric Solid Human Organs.Genes (Basel). 2025 Feb 12;16(2):215. doi: 10.3390/genes16020215. Genes (Basel). 2025. PMID: 40004544 Free PMC article. Review.
References
-
- Rafat M, Jabbarvand M, Sharma N, Xeroudaki M, Tabe S, Omrani R, Thangavelu M, Mukwaya A, Fagerholm P, Lennikov A, et al. (2023). Bioengineered corneal tissue for minimally invasive vision restoration in advanced keratoconus in two clinical cohorts. Nat Biotechnol 41, 70–81. 10.1038/s41587-022-01408-w. - DOI - PMC - PubMed
MeSH terms
Grants and funding
- R01 NS129850/NS/NINDS NIH HHS/United States
- R21 NS127983/NS/NINDS NIH HHS/United States
- R01 GM143297/GM/NIGMS NIH HHS/United States
- R01 GM138565/GM/NIGMS NIH HHS/United States
- R21 HD105349/HD/NICHD NIH HHS/United States
- R21 NS113518/NS/NINDS NIH HHS/United States
- R21 HD105126/HD/NICHD NIH HHS/United States
- R21 HD109635/HD/NICHD NIH HHS/United States
- R21 HD105192/HD/NICHD NIH HHS/United States
- R01 HD103627/HD/NICHD NIH HHS/United States
- UM1 HG011996/HG/NHGRI NIH HHS/United States
- R21 HD100931/HD/NICHD NIH HHS/United States
LinkOut - more resources
Full Text Sources