Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2024 Aug 1;70(8):1064-1075.
doi: 10.1093/clinchem/hvae081.

Machine Learning-Based Prediction of Hemoglobinopathies Using Complete Blood Count Data

Affiliations
Multicenter Study

Machine Learning-Based Prediction of Hemoglobinopathies Using Complete Blood Count Data

Anoeska Schipper et al. Clin Chem. .

Abstract

Background: Hemoglobinopathies, the most common inherited blood disorder, are frequently underdiagnosed. Early identification of carriers is important for genetic counseling of couples at risk. The aim of this study was to develop and validate a novel machine learning model on a multicenter data set, covering a wide spectrum of hemoglobinopathies based on routine complete blood count (CBC) testing.

Methods: Hemoglobinopathy test results from 10 322 adults were extracted retrospectively from 8 Dutch laboratories. eXtreme Gradient Boosting (XGB) and logistic regression models were developed to differentiate negative from positive hemoglobinopathy cases, using 7 routine CBC parameters. External validation was conducted on a data set from an independent Dutch laboratory, with an additional external validation on a Spanish data set (n = 2629) specifically for differentiating thalassemia from iron deficiency anemia (IDA).

Results: The XGB and logistic regression models achieved an area under the receiver operating characteristic (AUROC) of 0.88 and 0.84, respectively, in distinguishing negative from positive hemoglobinopathy cases in the independent external validation set. Subclass analysis showed that the XGB model reached an AUROC of 0.97 for β-thalassemia, 0.98 for α0-thalassemia, 0.95 for homozygous α+-thalassemia, 0.78 for heterozygous α+-thalassemia, and 0.94 for the structural hemoglobin variants Hemoglobin C, Hemoglobin D, Hemoglobin E. Both models attained AUROCs of 0.95 in differentiating IDA from thalassemia.

Conclusions: Both the XGB and logistic regression model demonstrate high accuracy in predicting a broad range of hemoglobinopathies and are effective in differentiating hemoglobinopathies from IDA. Integration of these models into the laboratory information system facilitates automated hemoglobinopathy detection using routine CBC parameters.

PubMed Disclaimer

Publication types

LinkOut - more resources