Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Sep 7:592:111883.
doi: 10.1016/j.jtbi.2024.111883. Epub 2024 Jun 20.

A model of time-dependent macromolecular and elemental composition of phytoplankton

Affiliations
Free article

A model of time-dependent macromolecular and elemental composition of phytoplankton

Anne Willem Omta et al. J Theor Biol. .
Free article

Abstract

Phytoplankton Chl:C:N:P ratios are important from both an ecological and a biogeochemical perspective. We show that these elemental ratios can be represented by a phytoplankton physiological model of low complexity that includes major cellular macromolecular pools. In particular, our model resolves time-dependent intracellular pools of chlorophyll, proteins, nucleic acids, carbohydrates/lipids, and N and P storage. Batch culture data for two diatom and two prasinophyte species are used to constrain parameters that represent specific allocation traits and strategies. A key novelty is the simultaneous estimation of physiological parameters for two phytoplankton groups of such different sizes. The number of free parameters is reduced by assuming (i) allometric scaling for maximum uptake rates, (ii) shared half-saturation constants for synthesis of functional macromolecules, (iii) shared exudation rates of functional macromolecules across the species. The rationale behind this assumption is that across the different species, the same or similar processes, enzymes, and metabolites play a role in key physiological processes. For the turnover numbers of macromolecular synthesis and storage exudation rates, differences between diatoms and prasinophytes need to be taken into account to obtain a good fit. Our model fits suggest that the parameters related to storage dynamics dominate the differences in the C:N:P ratios between the different phytoplankton groups. Since descriptions of storage dynamics are still incomplete and imprecise, predictions of C:N:P ratios by phytoplankton models likely have a large uncertainty.

Keywords: Chl; Dynamics; Plankton physiology; Protein; Stoichiometry.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

LinkOut - more resources