Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2024 Jul 2;18(26):16516-16529.
doi: 10.1021/acsnano.3c12537. Epub 2024 Jun 24.

Theragnostic Gadolinium-Based Nanoparticles Safely Augment X-ray Radiation Effects in Patients with Cervical Cancer

Affiliations
Clinical Trial

Theragnostic Gadolinium-Based Nanoparticles Safely Augment X-ray Radiation Effects in Patients with Cervical Cancer

Cyrus Chargari et al. ACS Nano. .

Abstract

Activated guided irradiation by X-ray (AGuIX) nanoparticles are gadolinium-based agents that have the dual benefit of mimicking the effects of a magnetic resonance imaging (MRI) contrast agent used in a clinical routine and enhancing the radiotherapeutic activity of conventional X-rays (for cancer treatment). This "theragnostic" action is explained on the one hand by the paramagnetic properties of gadolinium and on the other hand by the generation of high densities of secondary radiation following the interaction of ionizing radiation and high-Z atoms, which leads to enhanced radiation dose deposits within the tumors where the nanoparticles accumulate. Here, we report the results of a phase I trial that aimed to assess the safety and determine the optimal dose of AGuIX nanoparticles in combination with chemoradiation and brachytherapy in patients with locally advanced cervical cancer. AGuIX nanoparticles were administered intravenously and appropriately accumulated within tumors on a dose-dependent manner, as assessed by T1-weighted MRI, with a rapid urinary clearance of uncaught nanoparticles. We show that the observed tumor accumulation of the compounds can support precise delineation of functional target volumes at the time of brachytherapy based on gadolinium enhancement. AGuIX nanoparticles combined with chemoradiation appeared well tolerated among the 12 patients treated, with no dose-limiting toxicity observed. Treatment yielded excellent local control, with all patients achieving complete remission of the primary tumor. One patient had a distant tumor recurrence. These results demonstrate the clinical feasibility of using theranostic nanoparticles to augment the accuracy of MRI-based treatments while focally enhancing the radiation activity in tumors.

Keywords: brachytherapy; cervical cancer; gadolinium-based nanoparticles; phase I; radiation oncology; radiotherapy; theragnostics.

PubMed Disclaimer

References

Publication types

LinkOut - more resources