Iron Chelation in Soil: Scalable Biotechnology for Accelerating Carbon Dioxide Removal by Enhanced Rock Weathering
- PMID: 38913808
- PMCID: PMC11238546
- DOI: 10.1021/acs.est.3c10146
Iron Chelation in Soil: Scalable Biotechnology for Accelerating Carbon Dioxide Removal by Enhanced Rock Weathering
Abstract
Enhanced rock weathering (EW) is an emerging atmospheric carbon dioxide removal (CDR) strategy being scaled up by the commercial sector. Here, we combine multiomics analyses of belowground microbiomes, laboratory-based dissolution studies, and incubation investigations of soils from field EW trials to build the case for manipulating iron chelators in soil to increase EW efficiency and lower costs. Microbial siderophores are high-affinity, highly selective iron (Fe) chelators that enhance the uptake of Fe from soil minerals into cells. Applying RNA-seq metatranscriptomics and shotgun metagenomics to soils and basalt grains from EW field trials revealed that microbial communities on basalt grains significantly upregulate siderophore biosynthesis gene expression relative to microbiomes of the surrounding soil. Separate in vitro laboratory incubation studies showed that micromolar solutions of siderophores and high-affinity synthetic chelator (ethylenediamine-N,N'-bis-2-hydroxyphenylacetic acid, EDDHA) accelerate EW to increase CDR rates. Building on these findings, we develop a potential biotechnology pathway for accelerating EW using the synthetic Fe-chelator EDDHA that is commonly used in agronomy to alleviate the Fe deficiency in high pH soils. Incubation of EW field trial soils with potassium-EDDHA solutions increased potential CDR rates by up to 2.5-fold by promoting the abiotic dissolution of basalt and upregulating microbial siderophore production to further accelerate weathering reactions. Moreover, EDDHA may alleviate potential Fe limitation of crops due to rising soil pH with EW over time. Initial cost-benefit analysis suggests potassium-EDDHA could lower EW-CDR costs by up to U.S. $77 t CO2 ha-1 to improve EW's competitiveness relative to other CDR strategies.
Keywords: EDDHA; basalt; biotechnology; carbon capture; carbon dioxide removal; chelating agent; chelator; enhanced weathering; siderophore.
Conflict of interest statement
The authors declare no competing financial interest.
Figures





References
-
- Beerling D. J.; Epihov D. Z.; Kantola I. B.; Masters M. D.; Reershemius T.; Planavsky N. J.; Reinhard C. T.; Jordan J. S.; Thorne S. J.; Weber J.; Val Martin M.; Freckleton R. P.; Hartley S. E.; James R. H.; Pearce C. R.; DeLucia E. H.; Banwart S. A. Enhanced Weathering in the US Corn Belt Delivers Carbon Removal with Agronomic Benefits. Proc. Natl. Acad. Sci. U.S.A. 2024, 121 (9), e231943612110.1073/pnas.2319436121. - DOI - PMC - PubMed
-
- Kantola I. B.; Blanc-Betes E.; Masters M. D.; Chang E.; Marklein A.; Moore C. E.; Haden A. von.; Bernacchi C. J.; Wolf A.; Epihov D. Z.; Beerling D. J.; DeLucia E. H. Improved Net Carbon Budgets in the US Midwest through Direct Measured Impacts of Enhanced Weathering. Global Change Biol. 2023, 29 (24), 7012–7028. 10.1111/gcb.16903. - DOI - PubMed
-
- Beerling D. J.; Leake J. R.; Long S. P.; Scholes J. D.; Ton J.; Nelson P. N.; Bird M.; Kantzas E.; Taylor L. L.; Sarkar B.; Kelland M.; DeLucia E.; Kantola I.; Müller C.; Rau G.; Hansen J. Farming with Crops and Rocks to Address Global Climate, Food and Soil Security. Nat. Plants 2018, 4 (3), 138–147. 10.1038/s41477-018-0108-y. - DOI - PubMed
-
- Kelland M. E.; Wade P. W.; Lewis A. L.; Taylor L. L.; Sarkar B.; Andrews M. G.; Lomas M. R.; Cotton T. E. A.; Kemp S. J.; James R. H.; Pearce C. R.; Hartley S. E.; Hodson M. E.; Leake J. R.; Banwart S. A.; Beerling D. J. Increased Yield and CO2 Sequestration Potential with the C4 Cereal Sorghum Bicolor Cultivated in Basaltic Rock Dust-Amended Agricultural Soil. Global Change Biol. 2020, 26 (6), 3658–3676. 10.1111/gcb.15089. - DOI - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous