Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024:1455:215-226.
doi: 10.1007/978-3-031-60183-5_12.

Coordinate-Based Meta-Analyses of the Time Perception Network

Affiliations
Review

Coordinate-Based Meta-Analyses of the Time Perception Network

Martin Wiener. Adv Exp Med Biol. 2024.

Abstract

The study of time perception has advanced over the past three decades to include numerous neuroimaging studies, most notably including the use of functional Magnetic Resonance Imaging (fMRI). Yet, with this increase in studies, there comes the desire to draw broader conclusions across datasets about the nature and instantiation of time in the human brain. In the absence of collating individual studies together, the field has employed the use of Coordinate-Based Meta-Analyses (CBMA), in which foci from individual studies are modeled as probability distributions within the brain, from which common areas of activation-likelihood are determined. This chapter provides an overview of these CBMA studies, the methods they employ, the conclusions drawn by them, and where future areas of inquiry lie. The result of this survey suggests the existence of a domain-general "timing network" that can be used both as a guide for individual neuroimaging studies and as a template for future meta-analyses.

Keywords: Meta-analysis; Neuroimaging; Timing network; fMRI.

PubMed Disclaimer

References

    1. Acar, F., Seurinck, R., Eickhoff, S. B., & Moerkerke, B. (2018). Assessing robustness against potential publication bias in Activation Likelihood Estimation (ALE) meta-analyses for fMRI. PLoS One, 13, e0208177. - PubMed - PMC - DOI
    1. Allman, M. J., Teki, S., Griffiths, T. D., & Meck, W. H. (2014). Properties of the internal clock: First- and second-order principles of subjective time. Annual Review of Psychology, 65, 743–771. - PubMed - DOI
    1. Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412–427. - PubMed - DOI
    1. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34, 537–541. - PubMed - DOI
    1. Bueti, D. (2011). The sensory representation of time. Frontiers in Integrative Neuroscience, 5, 34. - PubMed - PMC - DOI

LinkOut - more resources