Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Sep 25;16(38):50567-50575.
doi: 10.1021/acsami.4c06257. Epub 2024 Jun 25.

Reaction Mechanism of Rapid CO Electroreduction to Propylene and Cyclopropane (C3+) over Triple Atom Catalysts

Affiliations

Reaction Mechanism of Rapid CO Electroreduction to Propylene and Cyclopropane (C3+) over Triple Atom Catalysts

Mohsen Tamtaji et al. ACS Appl Mater Interfaces. .

Abstract

The carbon monoxide reduction reaction (CORR) toward C2+ and C3+ products such as propylene and cyclopropane can not only reduce anthropogenic emissions of CO and CO2 but also produce value-added organic chemicals for polymer and pharmaceutical industries. Here, we introduce the concept of triple atom catalysts (TACs) that have three intrinsically strained and active metal centers for reducing CO to C3+ products. We applied grand canonical potential kinetics (GCP-K) to screen 12 transition metals (M) supported by nitrogen-doped graphene denoted as M3N7, where M stands for Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au. We sought catalysts with favorable CO binding, hydrogen binding, and C-C dimerization energetics, identifying Fe3N7 and Ir3N7 as the best candidates. We then studied the entire reaction mechanism from CO to C3H6 and C2H4 as a function of applied potential via, respectively, 12-electron and 8-electron transfer pathways on Fe3N7 and Ir3N7. Density functional theory (DFT) predicts an overpotential of 0.17 VRHE for Fe3N7 toward propylene and an overpotential of 0.42 VRHE toward cyclopropane at 298.15 K and pH = 7. Also, DFT predicts an overpotential of 0.15 VRHE for Ir3N7 toward ethylene. This work provides fundamental insights into the design of advanced catalysts for C2+ and C3+ synthesis at room temperature.

Keywords: C3+ products; CO2RR; GCP-K; grand canonical potential kinetics; jDFTx.

PubMed Disclaimer

LinkOut - more resources