Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul 8;63(27):12593-12603.
doi: 10.1021/acs.inorgchem.4c01548. Epub 2024 Jun 26.

Attaching Metal-Containing Moieties to β-Lactam Antibiotics: The Case of Penicillin and Cephalosporin

Affiliations

Attaching Metal-Containing Moieties to β-Lactam Antibiotics: The Case of Penicillin and Cephalosporin

María Moreno-Latorre et al. Inorg Chem. .

Abstract

Procedures for the preparation of transition metal complexes having intact bicyclic cepham or penam systems as ligands have been developed. Starting from readily available 4-azido-2-azetidinones, a synthetic approach has been tuned using a copper-catalyzed azide-alkyne cycloaddition between 3-azido-2-azetinones and alkynes, followed by methylation and transmetalation to Au(I) and Ir(III) complexes from the mesoionic carbene Ag(I) complexes. This methodology was applied to 6-azido penam and 7-azido cepham derivatives to build 6-(1,2,3-triazolyl)penam and 7-(1,2,3-triazolyl)cepham proligands, which upon methylation and metalation with Au(I) and Ir(III) complexes yielded products derived from the coordination of the metal to the penam C6 and cepham C7 positions, preserving intact the bicyclic structure of the penicillin and cephalosporin scaffolds. The crystal structure of complex 28b, which has an Ir atom directly bonded to the intact penicillin bicycle, was determined by X-ray diffraction. This is the first structural report of a penicillin-transition-metal complex having the bicyclic system of these antibiotics intact. The selectivity of the coordination processes was interpreted using DFT calculations.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Schematic Mode of Action of β-Lactam Cleavage by a Dizinc mβl
Figure 1
Figure 1
6-APA and 7-ACA antibiotics show the skeleton numbering.
Scheme 2
Scheme 2. Some Examples of Syntheses of Metallo-β-Lactams
Scheme 3
Scheme 3. Synthesis of 3-Azido-2-azetidinones 7
Scheme 4
Scheme 4. Syntheses of β-Lactam MIC–Au(I) Complexes 12
Figure 2
Figure 2
ORTEP view of complex trans-12b (ellipsoids at 40%; H atoms have been omitted for clarity except those bonded to C9 and C11). Selected interatomic distances (Å) and angles (°): C1–N1 1.367(5), C1–C2 1.380(5), C1–Au1 1.980(4), C2–N3 1.362(5), C3A–N3 1.468(4), C9–N1 1.455(4), C9–C10 1.548(5), C9–C11 1.568(5), C10–O1 1.211(4), C10–N4 1.358(5), C11–N4 1.494(4), Au1–Cl1 2.2817(9), N1–N2 1.337(4), N2–N3 1.318(4); N1–C1–C2 102.3(3), N1–C1–Au1 125.3(3), C2–C1–Au1 132.4(3), N3–C2–C1 107.4(3), N1–C9–C10 115.8(3), N1–C9–C11 116.8(3), C10–C9–C11 86.0(3), O1–C10–N4 133.2(4), O1–C10–C9 135.7(3), N4–C10–C9 91.1(3), N4–C11–C9 85.5(3), C1–Au1–Cl1 178.5(2), N2–N1–C1 114.9(3), N3–N2–N1 103.0(3), N2–N3–C2 112.4(3), C10–N4–C11 96.2(3).
Scheme 5
Scheme 5. Syntheses of β-Lactam MIC–Ir(III) Complexes 13 and 14
Scheme 6
Scheme 6. Synthesis of β-Lactam MIC–Pd(II) Complex 15
Figure 3
Figure 3
ORTEP view of compound 18b (ellipsoids at 40%; H atoms have been omitted for clarity except those bonded to C1 C9, C11, and C15). Selected interatomic distances (Å) and angles (°): C1–N1 1.352(3), C1–C2 1.371(3), C2–N3 1.370(3), C9–N1 1.445(3), C9–C10 1.556(3), C9–C11 1.562(3), C10–O1 1.197(3), C10–N4 1.385(3), C11–N4 1.467(3), C11–S1 1.810(2), C12–C15 1.576(3), C12–S1 1.856(2), C15–N4 1.447(3), C15–C16 1.519(3), C16–O2 1.205(3), C16–O3 1.343(2), N1–N2 1.353(3), N2–N3 1.312(3); N1–C1–C2 104.6(2), N3–C2–C1 108.3(2), N1–C9–C10 113.5(2), N1–C9–C11 116.8(2), C10–C9–C11 85.0(2), O1–C10–N4 132.2(2), O1–C10–C9 136.5(2), N4–C10–C9 91.3(2), N4–C11–C9 88.0(2), N4–C11–S1 105.7(1), C9–C11–S1 120.2(1), C14–C12–C15 113.8(2), C15–C12–S1 105.7(1), N4–C15–C12 106.3(2), C1–N1–N2 111.0(2), C1–N1–C9 127.3(2), N2–N1–C9 121.3(2), N3–N2–N1 107.0(2), N2–N3–C2 109.1(2).
Scheme 7
Scheme 7. Syntheses of Proligands 19 Derived from 6-APA
Scheme 8
Scheme 8. Syntheses of Proligands 20 and 21 Derived from 7-ACA
Scheme 9
Scheme 9. Synthesis of C6–Ir(III) Complexes with a Penam Bicyclic System
Figure 4
Figure 4
ORTEP view of complex 28b (ellipsoids at 40%; H-atoms have been omitted for clarity, except those bonded to C1, C11, and C15). Selected interatomic distances (Å) and angles (°): C1–N1 1.35(1), C1–C2 1.38(1), C2–N3 1.37(1), C3A–N3 1.47(1), C9–N1 1.47(1), C9–C10 1.54(1), C9–C11 1.57(1), C9–Ir1 2.122(9), C10–O1 1.21(1), C10–N4 1.39(1), C11–N4 1.47(1), C11–S1 1.835(9), C12–C15 1.57(1), C12–S1 1.861(8), C15–N4 1.44(1), C15–C16 1.53(1), C16–O2 1.19(1), C16–O3 1.35(1), C24–C28 1.44(1), C24–Ir1 2.159(8), C25–Ir1 2.136(9), C26–Ir1 2.223(9), C27–Ir1 2.224(8), C28–Ir1 2.146(9), Cl1–Ir1 2.437(2), Cl2–Ir1 2.406(2), N1–N2 1.31(1), N2–N3 1.33(1); N1–C1–C2 105.6(8), N3–C2–C1 104.4(8), N1–C9–C10 110.9(7), N1–C9–C11 111.9(7), C10–C9–C11 84.1(6), N4–C10–C9 92.9(7), N4–C11–C9 88.4(6), N4–C11–S1 104.8(5), C14–C12–S1 108.4(7), C15–C12–S1 104.5(6), N4–C15–C12 107.0(7), N2–N1–C1 113.1(7), C9–N1–C1 125.1(7), N2–N1–C9 121.8(7), N3–N2–N1 104.3(7), N2–N3–C2 112.5(7), C10–N4–C15 127.8(7), C10–N4–C11 93.4(6), C15–N4–C11 117.5(6).
Scheme 10
Scheme 10. Syntheses of C7–Ir(III) Complexes with a Cepham Bicyclic System
Scheme 11
Scheme 11. Synthesis of Complex 30
Scheme 12
Scheme 12. 1,3-H Shift to Form the Carbene Proligand in the Four-Membered Ring from the Initial Deprotonation of the 1,2,3-Triazolium Salt
Scheme 13
Scheme 13. Computed Relative Gibbs Energies for the Pairs of Carbene Complexes 28b–28b′ and 3131′
Scheme 14
Scheme 14. Computed Relative Gibbs Energies for (a) Carbenes Derived from 6-(1,2,3-Triazolyl)penam 32 and 32′ and (b) Carbenes Derived from 6-(1,2,3-Triazolyl)-2-azetidinone 33 and 33′

References

    1. Murray C. J. L.; Ikuta K. S.; Sharara F.; Swetschinski L.; Robles Aguilar G.; Gray A.; Han C.; Bisignano C.; Rao P.; Wool E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: a Systematic Analysis. Lancet 2022, 399, 629–655. 10.1016/S0140-6736(21)02724-0. - DOI - PMC - PubMed
    1. O’Neill J.Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Government of the United Kingdom, 2016.
    1. Cong W.; Poudel A. N.; Alhusein N.; Wang H.; Yao G.; Lambert H. Antimicrobial Use in COVID-19 Patients in the First Phase of the SARS-CoV-2 Pandemic: A Scoping Review. Antibiotics 2021, 10, 745.10.3390/antibiotics10060745. - DOI - PMC - PubMed
    1. Additional evidence from the World Health Organization (WHO) shows the extensive overuse of antibiotics during COVID-19 pandemic worldwide, which may have exacerbated ″silent″ spread of antimicrobial resistance (AMR). Published on WHO web page: https://www.who.int/news/item/26-04-2024-who-reports-widespread-overuse-... (accessed May 22, 2024).
    2. Langford B. J.; So M.; Simeonova M.; Leung V.; Lo J.; Kan T.; Raybardhan S.; Sapin M. E.; Mponponsuo K.; Farrell A.; Leung E.; Soucy J.-P. R.; Cassini A.; MacFadden D.; Daneman N.; Bertagnolio S. Antimicrobial Resistance in Patients with COVID-19: A Systematic Review and Meta-analysis. Lancet Microbe 2023, 4, E179–E191. 10.1016/S2666-5247(22)00355-X. - DOI - PMC - PubMed
    1. The first β-lactamase was identified at the beginning of the 1940s decade, even before of the massive use of penicillin during and after WWII. See:

    2. Abraham E. Roots: Selective reminiscences of β-lactam antibiotics: Early research on penicillin and cephalosporins. BioEssays 1990, 12, 601–606. 10.1002/bies.950121208. - DOI - PubMed
    3. Anderson R. J.; Groundwater P. W.; Todd A.; Worsley A.. Antibacterial Agents: Chemistry, Mode of Action, Mechanisms of Resistance and Clinical Applications; Wiley: New York, 2012.

MeSH terms