Mitigation of salinity stress in yarrow (Achillea millefolium L.) plants through spermidine application
- PMID: 38923971
- PMCID: PMC11206933
- DOI: 10.1371/journal.pone.0304831
Mitigation of salinity stress in yarrow (Achillea millefolium L.) plants through spermidine application
Abstract
This study investigated the mitigating effects of spermidine on salinity-stressed yarrow plants (Achillea millefolium L.), an economically important medicinal crop. Plants were treated with four salinity levels (0, 30, 60, 90 mM NaCl) and three spermidine concentrations (0, 1.5, 3 μM). Salinity induced electrolyte leakage in a dose-dependent manner, increasing from 22% at 30 mM to 56% at 90 mM NaCl without spermidine. However, 1.5 μM spermidine significantly reduced leakage across salinities by 1.35-11.2% relative to untreated stressed plants. Photosynthetic pigments (chlorophyll a, b, carotenoids) also exhibited salinity- and spermidine-modulated responses. While salinity decreased chlorophyll a, both spermidine concentrations increased chlorophyll b and carotenoids under most saline conditions. Salinity and spermidine synergistically elevated osmoprotectants proline and total carbohydrates, with 3 μM spermidine augmenting proline and carbohydrates up to 14.4% and 13.1% at 90 mM NaCl, respectively. Antioxidant enzymes CAT, POD and APX displayed complex regulation influenced by treatment factors. Moreover, salinity stress and spermidine also influenced the expression of linalool and pinene synthetase genes, with the highest expression levels observed under 90 mM salt stress and the application of 3 μM spermidine. The findings provide valuable insights into the responses of yarrow plants to salinity stress and highlight the potential of spermidine in mitigating the adverse effects of salinity stress.
Copyright: © 2024 Alijani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures








References
-
- Toplan GG, Taşkın T, İşcan G, Göger F, Kürkçüoğlu M, Civaş A, et al.. comparative studies on essential oil and phenolic content with in vitro antioxidant, anticholinesterase, antimicrobial activities of Achillea biebersteinii Afan. and A. millefolium subsp. millefolium Afan. L. growing in Eastern Turkey. Molecules. 2022;27: 1956. doi: 10.3390/molecules27061956 - DOI - PMC - PubMed
-
- Farajpour M, Ebrahimi M, Amiri R, Nori S, Golzari R. Investigation of variations of the essential oil content and morphological values in yarrow (Achillea Santolina) from Iran. J Med Plants Res. 2011;5: 4393–4395.
-
- Farajpour M, Ebrahimi M, Amiri R, Golzari R, Sanjari S. Assessment of genetic diversity in Achillea millefolium accessions from Iran using ISSR marker. Biochem Syst Ecol. 2012;43: 73–79. doi: 10.1016/j.bse.2012.02.017 - DOI
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous