Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun;630(8018):891-898.
doi: 10.1038/s41586-024-07534-6. Epub 2024 Jun 26.

Explainable El Niño predictability from climate mode interactions

Affiliations

Explainable El Niño predictability from climate mode interactions

Sen Zhao et al. Nature. 2024 Jun.

Abstract

The El Niño-Southern Oscillation (ENSO) provides most of the global seasonal climate forecast skill1-3, yet, quantifying the sources of skilful predictions is a long-standing challenge4-7. Different sources of predictability affect ENSO evolution, leading to distinct global effects. Artificial intelligence forecasts offer promising advancements but linking their skill to specific physical processes is not yet possible8-10, limiting our understanding of the dynamics underpinning the advancements. Here we show that an extended nonlinear recharge oscillator (XRO) model shows skilful ENSO forecasts at lead times up to 16-18 months, better than global climate models and comparable to the most skilful artificial intelligence forecasts. The XRO parsimoniously incorporates the core ENSO dynamics and ENSO's seasonally modulated interactions with other modes of variability in the global oceans. The intrinsic enhancement of ENSO's long-range forecast skill is traceable to the initial conditions of other climate modes by means of their memory and interactions with ENSO and is quantifiable in terms of these modes' contributions to ENSO amplitude. Reforecasts using the XRO trained on climate model output show that reduced biases in both model ENSO dynamics and in climate mode interactions can lead to more skilful ENSO forecasts. The XRO framework's holistic treatment of ENSO's global multi-timescale interactions highlights promising targets for improving ENSO simulations and forecasts.

PubMed Disclaimer

References

    1. McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in earth science. Science 314, 1740–1745 (2006). - PubMed
    1. Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018). - PubMed
    1. Cai, W. et al. Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00199-z (2021).
    1. Cane, M. A., Zebiak, S. E. & Dolan, S. C. Experimental forecasts of El Niño. Nature 321, 827–832 (1986).
    1. Barnston, A. G., Tippett, M. K., L’Heureux, M. L., Li, S. & DeWitt, D. G. Skill of real-time seasonal ENSO model predictions during 2002–11: is our capability increasing? Bull. Amer. Meteor. Soc. 93, 631–651 (2012).

LinkOut - more resources