Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Jun 4;13(6):409.
doi: 10.3390/biology13060409.

Immunonutrition, Metabolism, and Programmed Cell Death in Lung Cancer: Translating Bench to Bedside

Affiliations
Review

Immunonutrition, Metabolism, and Programmed Cell Death in Lung Cancer: Translating Bench to Bedside

Palma Fedele et al. Biology (Basel). .

Abstract

Lung cancer presents significant therapeutic challenges, motivating the exploration of novel treatment strategies. Programmed cell death (PCD) mechanisms, encompassing apoptosis, autophagy, and programmed necrosis, are pivotal in lung cancer pathogenesis and the treatment response. Dysregulation of these pathways contributes to tumor progression and therapy resistance. Immunonutrition, employing specific nutrients to modulate immune function, and metabolic reprogramming, a hallmark of cancer cells, offer promising avenues for intervention. Nutritional interventions, such as omega-3 fatty acids, exert modulatory effects on PCD pathways in cancer cells, while targeting metabolic pathways implicated in apoptosis regulation represents a compelling therapeutic approach. Clinical evidence supports the role of immunonutritional interventions, including omega-3 fatty acids, in augmenting PCD and enhancing treatment outcomes in patients with lung cancer. Furthermore, synthetic analogs of natural compounds, such as resveratrol, demonstrate promising anticancer properties by modulating apoptotic signaling pathways. This review underscores the convergence of immunonutrition, metabolism, and PCD pathways in lung cancer biology, emphasizing the potential for therapeutic exploration in this complex disease. Further elucidation of the specific molecular mechanisms governing these interactions is imperative for translating these findings into clinical practice and improving lung cancer management.

Keywords: apoptosis; immunonutrition; lung cancer; metabolism; programmed cell death.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

References

    1. Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021;71:7–33. doi: 10.3322/caac.21654. - DOI - PubMed
    1. Hanahan D., Weinberg R.A. Hallmarks of Cancer: The Next Generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. - DOI - PubMed
    1. Elmore S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007;35:495–516. doi: 10.1080/01926230701320337. - DOI - PMC - PubMed
    1. Kerr J.F.R., Wyllie A.H., Currie A.R. Apoptosis: A Basic Biological Phenomenon with Wideranging Implications in Tissue Kinetics. Br. J. Cancer. 1972;26:239–257. doi: 10.1038/bjc.1972.33. - DOI - PMC - PubMed
    1. Bivona T.G., Doebele R.C. A framework for understanding and targeting residual disease in oncogene-driven solid cancers. Nat. Med. 2016;22:472–478. doi: 10.1038/nm.4091. - DOI - PMC - PubMed

LinkOut - more resources