Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Jun 20;13(12):3611.
doi: 10.3390/jcm13123611.

Novel Treatment Strategies for Hormone Receptor (HR)-Positive, HER2-Negative Metastatic Breast Cancer

Affiliations
Review

Novel Treatment Strategies for Hormone Receptor (HR)-Positive, HER2-Negative Metastatic Breast Cancer

Antonella Ferro et al. J Clin Med. .

Abstract

Estrogen receptor (ER)-positive breast cancer (BC) is the most common BC subtype. Endocrine therapy (ET) targeting ER signaling still remains the mainstay treatment option for hormone receptor (HR)-positive BC either in the early or in advanced setting, including different strategies, such as the suppression of estrogen production or directly blocking the ER pathway through SERMs-selective estrogen receptor modulators-or SERDs-selective estrogen receptor degraders. Nevertheless, the development of de novo or acquired endocrine resistance still remains challenging for oncologists. The use of novel ET combined with targeted drugs, such as cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, has significantly improved long-term outcome rates, thus changing the therapeutic algorithm for metastatic BC (MBC) and recently the therapeutic strategy in the adjuvant setting for early high-risk BC. Eluding the resistance to CDK4/6 inhibitors combined with ET is currently an unmet medical need, and there is disagreement concerning the best course of action for patients who continue to progress after this combination approach. Genetic changes in the tumor along its growth uncovered by genomic profiling of recurrent and/or metastatic lesions through tumor and/or liquid biopsies may predict the response or resistance to specific agents, suggesting the best therapeutic strategy for each patient by targeting the altered ER-dependent pathway (novel oral SERDs and a new generation of anti-estrogen agents) or alternative ER-independent signaling pathways such as PI3K/AKT/mTOR or tyrosine kinase receptors (HER2 mutations or HER2 low status) or by inhibiting pathways weakened through germline BRCA1/2 mutations. These agents are being investigated as single molecules and in combination with other target therapies, offering promising weapons to overcome or avoid treatment failure and propose increasingly more personalized treatment approaches. This review presents novel insights into ET and other targeted therapies for managing metastatic HR+/HER2- BC by exploring potential strategies based on clinical evidence and genomic profiling following the failure of the CDK4/6i and ET combination.

Keywords: CDK4/6 inhibitors; endocrine therapy; hormone-positive HER2-negative breast cancer; next-generation endocrine agents; resistance mechanisms to ET and/or CDK4/6i; targeted therapies.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
A schematic representation of the main mechanisms of resistance to ET (A) and CDK4/6i (B) treatments. In red are the most frequent alterations found in HR+/HER2 MBC refractory to those therapies. Created with BioRender.com.
Figure 2
Figure 2
A scheme representing the different therapeutic strategies and the targets for ER+/HER2 MBC refractory to first-line treatments. Created with BioRender.com.
Figure 3
Figure 3
A potential algorithm for the treatment of HR+/HER2-negative MBC.

Similar articles

Cited by

References

    1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. - DOI - PubMed
    1. Allison K.H., Hammond M.E.H., Dowsett M., McKernin S.E., Carey L.A., Fitzgibbons P.L., Hayes D.F., Lakhani S.R., Chavez-MacGregor M., Perlmutter J., et al. Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update. J. Clin. Oncol. 2020;38:1346–1366. doi: 10.1200/JCO.19.02309. - DOI - PubMed
    1. Lumachi F., Santeufemia D.A., Basso S.M. Current medical treatment of estrogen receptor-positive breast cancer. World J. Biol. Chem. 2015;6:231–239. doi: 10.4331/wjbc.v6.i3.231. - DOI - PMC - PubMed
    1. Goel S., DeCristo M.J., McAllister S.S., Zhao J.J. CDK4/6 Inhibition in Cancer: Beyond Cell Cycle Arrest. Trends Cell Biol. 2018;28:911–925. doi: 10.1016/j.tcb.2018.07.002. - DOI - PMC - PubMed
    1. Hortobagyi G.N., Stemmer S.M., Burris H.A., Yap Y.S., Sonke G.S., Paluch-Shimon S., Campone M., Petrakova K., Blackwell K.L., Winer E.P., et al. Updated results from MONALEESA-2, a phase III trial of first-line ribociclib plus letrozole versus placebo plus letrozole in hormone receptor-positive, HER2-negative advanced breast cancer. Ann. Oncol. 2018;29:1541–1547. doi: 10.1093/annonc/mdy155. - DOI - PubMed