Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun 25;41(3):595-603.
doi: 10.7507/1001-5515.202311037.

[Structural design and evaluation of bone remodeling effect of fracture internal fixation implants with time-varying stiffness]

[Article in Chinese]
Affiliations

[Structural design and evaluation of bone remodeling effect of fracture internal fixation implants with time-varying stiffness]

[Article in Chinese]
Hao Sun et al. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. .

Abstract

The stiffness of an ideal fracture internal fixation implant should have a time-varying performance, so that the fracture can generate reasonable mechanical stimulation at different healing stages, and biodegradable materials meet this performance. A topology optimization design method for composite structures of fracture internal fixation implants with time-varying stiffness is proposed, considering the time-dependent degradation process of materials. Using relative density and degradation residual rate to describe the distribution and degradation state of two materials with different degradation rates and elastic modulus, a coupled mathematical model of degradation simulation mechanical analysis was established. Biomaterial composite structures were designed based on variable density method to exhibit time-varying stiffness characteristics. Taking the bone plate used for the treatment of tibial fractures as an example, a composite structure bone plate with time-varying stiffness characteristics was designed using the proposed method. The optimization results showed that material 1 with high stiffness formed a columnar support structure, while material 2 with low stiffness was distributed at the degradation boundary and inside. Using a bone remodeling simulation model, the optimized bone plates were evaluated. After 11 months of remodeling, the average elastic modulus of callus using degradable time-varying stiffness plates, titanium alloy plates, and stainless steel plates were 8 634 MPa, 8 521 MPa, and 8 412 MPa, respectively, indicating that the use of degradable time-varying stiffness plates would result in better remodeling effects on the callus.

理想的骨折内固定植入物刚度应具有随时间变化的性能,使骨折在不同愈合阶段都能产生合理的力学刺激,可降解材料可以满足这一性能。考虑到材料降解过程的时间依赖性,提出一种具有时变刚度的骨折内固定植入物复合结构拓扑优化设计方法。采用相对密度和降解残留率描述两种具有不同降解速度和弹性模量的材料分布和降解状态,建立降解模拟-力学分析耦合数学模型;基于变密度法设计双材料复合结构,使之具有时变刚度特性。以胫骨骨折治疗用的接骨板为例,采用所提出方法设计具有时变刚度特性的复合结构接骨板,优化结果显示高刚度的材料1形成柱状的支撑结构,低刚度的材料2分布在降解边界和内部。利用骨重塑模拟模型对优化后的接骨板进行评估,经过11个月重塑,使用可降解时变刚度接骨板、钛合金接骨板和不锈钢接骨板的骨痂平均弹性模量分别为8 634、8 521、8 412 MPa,表明使用可降解时变刚度接骨板可使骨痂取得更好的重塑效果。.

Keywords: Biodegradation; Bone remodeling; Composite structure; Time-varying stiffness; Topology optimization.

PubMed Disclaimer

Conflict of interest statement

利益冲突声明:本文全体作者均声明不存在利益冲突。

Figures

图 1
图 1
The degradation rate and mechanical trend of ideal fracture internal fixation implants 理想骨折内固定植入物降解率与力学性能变化趋势
图 2
图 2
Design of composite structures considering time-varying stiffness characteristics 考虑时变刚度特性的复合结构设计
图 3
图 3
Schematic diagram of degradation process 降解过程示意图
图 4
图 4
Topological optimization design process for dual material degradable structures 双材料可降解结构的拓扑优化设计流程
图 5
图 5
Bone and bone plate fixation system 胫骨-接骨板固定系统
图 6
图 6
Topology optimization design result 拓扑优化设计结果
图 7
图 7
Degradation process of topology optimization design results considering time-varying characteristics 考虑时变特性拓扑优化设计结果的降解过程
图 8
图 8
The schematic of relationship between the rate of change in bone density and mechanical stimulus 骨密度变化率与力学刺激关系示意图
图 9
图 9
Distribution cloud map of elastic modulus of callus 骨痂弹性模量分布云图

References

    1. Agarwal S, Curtin J, Duffy B, et al Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Mater Sci Eng C. 2016;68(1):948–963. - PubMed
    1. Markert Z B Numerical simulation of the tissue differentiation and corrosion process of biodegradable magnesium implants during bone fracture healing. Zamm-Z Angew Math Me. 2018;98(12):2223–2238. doi: 10.1002/zamm.201700314. - DOI
    1. Zberg B, Uggowitzer P J, Löffler J F MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater. 2009;8(11):887–891. doi: 10.1038/nmat2542. - DOI - PubMed
    1. Zheng Y F, Gu X N, Witte F Biodegradable metals. Mat Sci Eng R. 2014;77:1–34. doi: 10.1016/j.mser.2014.01.001. - DOI
    1. Wang J, Xu J, Hopkins C, et al Biodegradable magnesium-based implants in orthopedics-A general review and perspectives. Adv Sci. 2020;7(8):1902443. doi: 10.1002/advs.201902443. - DOI - PMC - PubMed

Publication types

LinkOut - more resources