Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Sep:189:105526.
doi: 10.1016/j.ijmedinf.2024.105526. Epub 2024 Jun 19.

Review of machine learning solutions for eating disorders

Affiliations
Free article
Review

Review of machine learning solutions for eating disorders

Sreejita Ghosh et al. Int J Med Inform. 2024 Sep.
Free article

Abstract

Background: Eating Disorders (EDs) are one of the most complex psychiatric disorders, with significant impairment of psychological and physical health, and psychosocial functioning, and are associated with low rates of early detection, low recovery and high relapse rates. This underscores the need for better diagnostic and treatment methods.

Objective: This narrative review explores current Machine Learning (ML) and Artificial Intelligence (AI) applications in the domain of EDs, with a specific emphasis on clinical management in treatment settings. The primary objective are to (i) decrease the knowledge gap between ED researchers and AI-practitioners, by presenting the current state-of-the-art AI applications (including models for causality) in different ED use-cases; (ii) identify limitations of these existing AI interventions and how to address them.

Results: AI/ML methods have been applied in different ED use-cases, including ED risk factor identification and incidence prediction (including the analysis of social media content in the general population), diagnosis, monitoring patients and treatment response and prognosis in clinical populations. A comparative analysis of AI-techniques deployed in these use-cases have been performed, considering factors such as complexity, flexibility, functionality, explainability and adaptability to healthcare constraints.

Conclusion: Multiple restrictions have been identified in the existing methods in ML and Causality in terms of achieving actionable healthcare for ED, like lack of good quality and quantity of data for models to train on, while requiring models to be flexible, high-performing, yet being explainable and producing counterfactual explanations, for ensuring the fairness and trustworthiness of its decisions. We conclude that to overcome these limitations and for future AI research and application in clinical management of ED, (i) careful considerations are required with regards to AI-model selection, and (ii) joint efforts from ED researcher and patient community are essential in building better quality and quantity of dedicated ED datasets and secure AI-solution framework.

Keywords: Actionable healthcare; Causality; Eating disorders; Machine learning.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare no conflict of interest.

LinkOut - more resources