Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Aug:85:45-57.
doi: 10.1016/j.euroneuro.2024.05.015. Epub 2024 Jun 26.

Multimodal brain-derived subtypes of Major depressive disorder differentiate patients for anergic symptoms, immune-inflammatory markers, history of childhood trauma and treatment-resistance

Affiliations
Free article

Multimodal brain-derived subtypes of Major depressive disorder differentiate patients for anergic symptoms, immune-inflammatory markers, history of childhood trauma and treatment-resistance

Federica Colombo et al. Eur Neuropsychopharmacol. 2024 Aug.
Free article

Abstract

An estimated 30 % of Major Depressive Disorder (MDD) patients exhibit resistance to conventional antidepressant treatments. Identifying reliable biomarkers of treatment-resistant depression (TRD) represents a major goal of precision psychiatry, which is hampered by the clinical and biological heterogeneity. To uncover biologically-driven subtypes of MDD, we applied an unsupervised data-driven framework to stratify 102 MDD patients on their neuroimaging signature, including extracted measures of cortical thickness, grey matter volumes, and white matter fractional anisotropy. Our novel analytical pipeline integrated different machine learning algorithms to harmonize data, perform data dimensionality reduction, and provide a stability-based relative clustering validation. The obtained clusters were characterized for immune-inflammatory peripheral biomarkers, TRD, history of childhood trauma and depressive symptoms. Our results indicated two different clusters of patients, differentiable with 67 % of accuracy: one cluster (n = 59) was associated with a higher proportion of TRD, and higher scores of energy-related depressive symptoms, history of childhood abuse and emotional neglect; this cluster showed a widespread reduction in cortical thickness (d = 0.43-1.80) and volumes (d = 0.45-1.05), along with fractional anisotropy in the fronto-occipital fasciculus, stria terminalis, and corpus callosum (d = 0.46-0.52); the second cluster (n = 43) was associated with cognitive and affective depressive symptoms, thicker cortices and wider volumes. Multivariate analyses revealed distinct brain-inflammation relationships between the two clusters, with increase in pro-inflammatory markers being associated with decreased cortical thickness and volumes. Our stratification of MDD patients based on structural neuroimaging identified clinically-relevant subgroups of MDD with specific symptomatic and immune-inflammatory profiles, which can contribute to the development of tailored personalized interventions for MDD.

Keywords: Biomarkers; Cluster analysis; Depression; Machine learning; Neuroimaging.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest CF was a speaker for Janssen. AS is or was a consultant/speaker for Abbott, Abbvie, Angelini, AstraZeneca, Clinical Data, Boehringer, Bristol-Myers Squibb, Eli Lilly, GlaxoSmithKline, Innovapharma, Italfarmaco, Janssen, Lundbeck, Naurex, Pfizer, Polifarma, Sanofi, Taliaz and Servier. All other authors declare that they have no conflicts of interest.

MeSH terms