Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Sep 1:200:106842.
doi: 10.1016/j.ejps.2024.106842. Epub 2024 Jun 25.

Novel tetrahydroquinoline derivatives induce ROS-mediated apoptosis in glioblastoma cells

Affiliations
Free article

Novel tetrahydroquinoline derivatives induce ROS-mediated apoptosis in glioblastoma cells

Shabnaz Koochakkhani et al. Eur J Pharm Sci. .
Free article

Abstract

Current treatment for Glioblastoma Multiforme (GBM) is not efficient due to its aggressive nature, tendency to infiltrate surrounding brain tissue, and chemotherapy resistance. Tetrahydroquinoline scaffolds are emerging as a new class of drug for treating many human cancers including GBM. This study investigates the cytotoxicity effect of eight novel derivatives of 2-((3,4-dihydroquinolin-1(2H)-yl)(aryl)methyl)phenol, containing substitute 1 with reduced dihydroquinoline fused with cyclohexene ring and substitute 2 with phenyl and methyl group. The 4-position of the aryl ring was determinant for the desired cytotoxicity, and out of the 8 synthesized compounds, the 4-trifluoromethyl substituted derivative (4ag) exhibited the most anti-GBM potential effect compared to the standard chemotherapeutic agent, temozolomide (TMZ), with IC50 values of 38.3 μM and 40.6 μM in SNB19 and LN229 cell lines, respectively. Our results demonstrated that 4ag triggers apoptosis through the activation of Caspase-3/7. In addition, 4ag induced intracellular reactive oxygen species (iROS) which in turn elevated mitochondrial ROS (mtROS) and causes the disruption of the mitochondrial membrane potential (Δψmt) in both GBM cells. This compound also exhibited anti-migratory properties over the time in both the cell lines. Overall, these findings suggest that tetrahydroquinoline derivative, 4ag could lead to the development of a new drug for treating GBM.

Keywords: Apoptosis; Cytotoxicity; Glioblastoma multiforme; Reactive oxygen species; Tetrahydroquinoline derivatives.

PubMed Disclaimer

MeSH terms

LinkOut - more resources