Application of Bis(amido)alkyl Magnesiates toward the Synthesis of Molecular Rubidium and Cesium Hydrido-magnesiates
- PMID: 38938897
- PMCID: PMC11200325
- DOI: 10.1021/acs.organomet.4c00190
Application of Bis(amido)alkyl Magnesiates toward the Synthesis of Molecular Rubidium and Cesium Hydrido-magnesiates
Abstract
Rubidium and cesium are the least studied naturally occurring s-block metals in organometallic chemistry but are in plentiful supply from a sustainability viewpoint as highlighted in the periodic table of natural elements published by the European Chemical Society. This underdevelopment reflects the phenomenal success of organometallic compounds of lithium, sodium, and potassium, but interest in heavier congeners has started to grow. Here, the synthesis and structures of rubidium and cesium bis(amido)alkyl magnesiates [(AM)MgN'2alkyl]∞, where N' is the simple heteroamide -N(SiMe3)(Dipp), and alkyl is nBu or CH2SiMe3, are reported. More stable than their nBu analogues, the reactivities of the CH2SiMe3 magnesiates toward 1,4-cyclohexadiene are revealed. Though both reactions produce target hydrido-magnesiates [(AM)MgN'2H]2 in crystalline form amenable to X-ray diffraction study, the cesium compound could only be formed in a trace quantity. These studies showed that the bulk of the -N(SiMe3)(Dipp) ligand was sufficient to restrict both compounds to dimeric structures. Bearing some resemblance to inverse crown complexes, each structure has [(AM)(N)(Mg)(N)]2 ring cores but differ in having no AM-N bonds, instead Rb and Cs complete the rings by engaging in multihapto interactions with Dipp π-clouds. Moreover, their hydride ions occupy μ3-(AM)2Mg environments, compared to μ2-Mg2 environments in inverse crowns.
© 2024 The Authors. Published by American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures







Similar articles
-
Structural Diversity in Alkali Metal and Alkali Metal Magnesiate Chemistry of the Bulky 2,6-Diisopropyl-N-(trimethylsilyl)anilino Ligand.Chemistry. 2016 Oct 10;22(42):14968-14978. doi: 10.1002/chem.201602683. Epub 2016 Aug 30. Chemistry. 2016. PMID: 27573676 Free PMC article.
-
Synthesis and Reactivity of Alkali Metal Hydrido-Magnesiate Complexes which Exhibit Group 1 Metal Counter-Cation Specific Stability.Inorg Chem. 2023 Sep 4;62(35):14393-14401. doi: 10.1021/acs.inorgchem.3c02086. Epub 2023 Aug 21. Inorg Chem. 2023. PMID: 37602922
-
Synthesis, Characterization, and Structural Analysis of AM[Al(NONDipp)(H)(SiH2Ph)] (AM = Li, Na, K, Rb, Cs) Compounds, Made Via Oxidative Addition of Phenylsilane to Alkali Metal Aluminyls.Inorg Chem. 2022 Dec 12;61(49):19838-19846. doi: 10.1021/acs.inorgchem.2c03010. Epub 2022 Nov 23. Inorg Chem. 2022. PMID: 36503245 Free PMC article.
-
Three Oxidative Addition Routes of Alkali Metal Aluminyls to Dihydridoaluminates and Reactivity with CO2.Chemistry. 2023 Oct 9;29(56):e202301849. doi: 10.1002/chem.202301849. Epub 2023 Sep 4. Chemistry. 2023. PMID: 37429823
-
Seven-Membered Cyclic Diamidoalumanyls of Heavier Alkali Metals: Structures and C-H Activation of Arenes.Organometallics. 2023 Sep 9;42(19):2881-2892. doi: 10.1021/acs.organomet.3c00323. eCollection 2023 Oct 9. Organometallics. 2023. PMID: 37829511 Free PMC article.
References
-
- Mulvey R. E.; Mongin F.; Uchiyama M.; Kondo Y. Deprotonative Metalation Using Ate Compounds: Synergy, Synthesis, and Structure Building. Angew. Chem., Int. Ed. 2007, 46, 3802–3824. 10.1002/anie.200604369. - DOI - PubMed
- Mulvey R. E. Avant-Garde Metalating Agents: Structural Basis of Alkali-Metal-Mediated Metalation. Acc. Chem. Res. 2009, 42, 743–755. 10.1021/ar800254y. - DOI - PubMed
- Robertson S. D.; Uzelac M.; Mulvey R. E. Alkali-Metal-Mediated Synergistic Effects in Polar Main Group Organometallic Chemistry. Chem. Rev. 2019, 119, 8332–8405. 10.1021/acs.chemrev.9b00047. - DOI - PubMed
- Gil-Negrete J. M.; Hevia E. Main Group Bimetallic Partnerships for Cooperative Catalysis. Chem. Sci. 2021, 12, 1982–1992. 10.1039/D0SC05116K. - DOI - PMC - PubMed
- Lachguar A.; Pichugov A. V.; Neumann T.; Dubrawski Z.; Camp C. Cooperative Activation of Carbon-Hydrogen Bonds by Heterobimetallic Systems. Dalton Trans. 2024, 53, 1393–1409. 10.1039/D3DT03571A. - DOI - PMC - PubMed
-
- Roy M. M. D.; Omaña A. A.; Wilson A. S. S.; Hill M. S.; Aldridge S.; Rivard E. Molecular Main Group Metal Hydrides. Chem. Rev. 2021, 121, 12784–12965. 10.1021/acs.chemrev.1c00278. - DOI - PubMed
- Evans M. J.; Jones C. Low oxidation state and hydrido group 2 complexes: synthesis and applications in the activation of gaseous substrates. Chem. Soc. Rev. 2024, 53, 5054–5082. 10.1039/D4CS00097H. - DOI - PubMed
-
- Gentner T. X.; Mulvey R. E. Alkali-Metal Mediation: Diversity of Applications in Main-Group Organometallic Chemistry. Angew. Chem., Int. Ed. 2021, 60, 9247–9262. 10.1002/anie.202010963. - DOI - PMC - PubMed
- Macdonald P. A.; Banerjee S.; Kennedy A. R.; Mulvey R. E.; Robertson S. D. Structural Characterization of the 1-Metallo-2-t-Butyl-1,2-Dihydropyridyl Rubidium and Caesium Complexes. Polyhedron 2023, 234, 116302.10.1016/j.poly.2023.116302. - DOI
-
- https://www.euchems.eu/euchems-periodic-table/ accessed April 16, 2024.
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous