Can Machines Find the Sweet Spot in End-Stage Heart Failure?
- PMID: 38939701
- PMCID: PMC11198332
- DOI: 10.1016/j.jacadv.2022.100122
Can Machines Find the Sweet Spot in End-Stage Heart Failure?
Keywords: artificial intelligence; heart failure; implementation science; machine learning; risk prediction.
Conflict of interest statement
The authors have reported that they have no relationships relevant to the contents of this paper to disclose.
Comment on
-
Augmented Intelligence to Identify Patients With Advanced Heart Failure in an Integrated Health System.JACC Adv. 2022 Oct;1(4):100123. doi: 10.1016/j.jacadv.2022.100123. Epub 2022 Oct 1. JACC Adv. 2022. PMID: 36643021 Free PMC article.
References
-
- Tromp J., Ouwerkerk W., van Veldhuisen Dirk J., et al. A systematic review and network meta-analysis of pharmacological treatment of heart failure with reduced ejection fraction. J Am Coll Cardiol HF. 2022;10:73–84. - PubMed
-
- Miller R.J.H., Howlett J.G., Fine N.M. A novel approach to medical management of heart failure with reduced ejection fraction. Can J Cardiol. 2021;37:632–643. - PubMed
-
- Dabiri Y., Mahadevan Vaikom S., Guccione Julius M., Kassab Ghassan S. A simulation study of the effects of number and location of MitraClips on mitral regurgitation. JACC Adv. 2022;1(1):100015.
-
- Truby L.K., Rogers J.G. Advanced heart failure. J Am Coll Cardiol HF. 2020;8:523–536. - PubMed
-
- Crespo-Leiro M.G., Metra M., Lund L.H., et al. Advanced heart failure: a position statement of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2018;20:1505–1535. - PubMed
Publication types
LinkOut - more resources
Full Text Sources