Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun 28;78(3):214-236.
doi: 10.5731/pdajpst.2022.012818.

In Silico Assessment of Biomolecule Reactivity with Leachables

Affiliations

In Silico Assessment of Biomolecule Reactivity with Leachables

Candice Johnson et al. PDA J Pharm Sci Technol. .

Abstract

Leachables in pharmaceutical products may react with biomolecule active pharmaceutical ingredients (APIs), for example, monoclonal antibodies (mAb), peptides, and ribonucleic acids (RNA), potentially compromising product safety and efficacy or impacting quality attributes. This investigation explored a series of in silico models to screen extractables and leachables to assess their possible reactivity with biomolecules. These in silico models were applied to collections of known leachables to identify functional and structural chemical classes likely to be flagged by these in silico approaches. Flagged leachable functional classes included antimicrobials, colorants, and film-forming agents, whereas specific chemical classes included epoxides, acrylates, and quinones. In addition, a dataset of 22 leachables with experimental data indicating their interaction with insulin glargine was used to evaluate whether one or more in silico methods are fit-for-purpose as a preliminary screen for assessing this biomolecule reactivity. Analysis of the data showed that the sensitivity of an in silico screen using multiple methodologies was 80%-90% and the specificity was 58%-92%. A workflow supporting the use of in silico methods in this field is proposed based on both the results from this assessment and best practices in the field of computational modeling and quality risk management.

Keywords: Biomolecule active pharmaceutical ingredients; Computational methods; Covalent interaction; Extractables; Leachables; Monoclonal antibodies; Predictive methods.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources