Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec;45(12):2625-2645.
doi: 10.1038/s41401-024-01310-y. Epub 2024 Jun 28.

Oncoprotein LAMTOR5-mediated CHOP silence via DNA hypermethylation and miR-182/miR-769 in promotion of liver cancer growth

Affiliations

Oncoprotein LAMTOR5-mediated CHOP silence via DNA hypermethylation and miR-182/miR-769 in promotion of liver cancer growth

Xue Wang et al. Acta Pharmacol Sin. 2024 Dec.

Abstract

C/EBP homologous protein (CHOP) triggers the death of multiple cancers via endoplasmic reticulum (ER) stress. However, the function and regulatory mechanism of CHOP in liver cancer remain elusive. We have reported that late endosomal/lysosomal adapter, mitogen-activated protein kinase and mTOR activator 5 (LAMTOR5) suppresses apoptosis in various cancers. Here, we show that the transcriptional and posttranscriptional inactivation of CHOP mediated by LAMTOR5 accelerates liver cancer growth. Clinical bioinformatic analysis revealed that the expression of CHOP was low in liver cancer tissues and that its increased expression predicted a good prognosis. Elevated CHOP contributed to destruction of LAMTOR5-induced apoptotic suppression and proliferation. Mechanistically, LAMTOR5-recruited DNA methyltransferase 1 (DNMT1) to the CpG3 region (-559/-429) of the CHOP promoter and potentiated its hypermethylation to block its interaction with general transcription factor IIi (TFII-I), resulting in its inactivation. Moreover, LAMTOR5-enhanced miR-182/miR-769 reduced CHOP expression by targeting its 3'UTR. Notably, lenvatinib, a first-line targeted therapy for liver cancer, could target the LAMTOR5/CHOP axis to prevent liver cancer progression. Accordingly, LAMTOR5-mediated silencing of CHOP via the regulation of ER stress-related apoptosis promotes liver cancer growth, providing a theoretical basis for the use of lenvatinib for the treatment of liver cancer.

Keywords: CHOP; DNA methylation; LAMTOR5; lenvatinib; liver cancer; miR-182/miR-769.

PubMed Disclaimer

Conflict of interest statement

Competing interests: The authors declare no competing interests.

References

    1. Chen X, Cubillos-Ruiz JR. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer. 2021;21:71–88. - PMC - PubMed
    1. Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 2020;21:421–38. - PMC - PubMed
    1. Xu Z, Bu Y, Chitnis N, Koumenis C, Fuchs SY, Diehl JA. miR-216b regulation of c-Jun mediates GADD153/CHOP-dependent apoptosis. Nat Commun. 2016;7:11422. - PMC - PubMed
    1. Gandelman M, Dansithong W, Figueroa KP, Paul S, Scoles DR, Pulst SM. Staufen 1 amplifies proapoptotic activation of the unfolded protein response. Cell Death Differ. 2020;27:2942–51. - PMC - PubMed
    1. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998;12:982–95. - PMC - PubMed

MeSH terms