Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul 10;16(27):35190-35199.
doi: 10.1021/acsami.4c07042. Epub 2024 Jun 29.

Elevating Thermoelectric Performance by Compositing Dibromo-Substituted Thienoacene with SWCNTs

Affiliations

Elevating Thermoelectric Performance by Compositing Dibromo-Substituted Thienoacene with SWCNTs

Yiyang Li et al. ACS Appl Mater Interfaces. .

Abstract

Composites of organic small molecules (OSMs) and single-walled carbon nanotubes (SWCNTs) have drawn great attention as flexible thermoelectric (TE) materials in recent years. Here, we synthesized thieno[2',3':4,5]thieno[3,2-b]thieno[2,3-d]thiophene (TTA) and 2,6-dibromothieno[2',3':4,5]thieno[3,2-b]thieno[2,3-d]thiophene (TTA-2Br) and compounded them with SWCNTs, obtaining thermoelectric TTA/SWCNT and TTA-2Br/SWCNT composites. The introduction of the electron-withdrawing Br group was found to decrease the highest molecular orbital energy level and bandgap (Eg) of TTA-2Br. As a result, the Seebeck coefficient (S) and power factor (PF) of the OSM/SWCNT composite films were significantly improved. Moreover, suitable energy barrier between TTA-2Br and SWCNTs facilitates the energy filtering effect, which further enhances thermoelectric properties of the 40 wt % TTA-2Br/SWCNT composite film with optimum thermoelectric properties (PF = 242.59 ± 9.42 μW m-1 K-2 at room temperature), good thermal stability, and mechanical flexibility. In addition, the thermoelectric generator (TEG) prepared using 40 wt % TTA-2Br/SWCNT composite films and n-type SWCNT films can generate an output power of 102.8 ± 7.4 nW at a temperature difference of 20 °C. This work provides new insights into the preparation of OSM/SWCNT composites with significantly enhanced thermoelectric properties.

Keywords: composites; single-walled carbon nanotubes; thermoelectrics; thieno[2′,3′:4,5]thieno[3,2-b]thieno[2,3-d]thiophene; thienoacene.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources