Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024;220(5):51.
doi: 10.1007/s11214-024-01072-3. Epub 2024 Jun 27.

Radar for Europa Assessment and Sounding: Ocean to Near-Surface (REASON)

Donald D Blankenship  1 Alina Moussessian  2 Elaine Chapin  2 Duncan A Young  1 G Wesley Patterson  3 Jeffrey J Plaut  2 Adam P Freedman  2 Dustin M Schroeder  4   5 Cyril Grima  1 Gregor Steinbrügge  2 Krista M Soderlund  1 Trina Ray  2 Thomas G Richter  1 Laura Jones-Wilson  2 Natalie S Wolfenbarger  5 Kirk M Scanlan  6 Christopher Gerekos  1 Kristian Chan  1   7 Ilgin Seker  2 Mark S Haynes  2 Amy C Barr Mlinar  8 Lorenzo Bruzzone  9 Bruce A Campbell  10 Lynn M Carter  11 Charles Elachi  12 Yonggyu Gim  2 Alain Hérique  13 Hauke Hussmann  14 Wlodek Kofman  13   15 William S Kurth  16 Marco Mastrogiuseppe  17 William B McKinnon  18 Jeffrey M Moore  19 Francis Nimmo  20 Carol Paty  21 Dirk Plettemeier  22 Britney E Schmidt  23   24 Mikhail Y Zolotov  25 Paul M Schenk  26 Simon Collins  2 Harry Figueroa  2 Mark Fischman  2 Eric Tardiff  2 Andy Berkun  2 Mimi Paller  2 James P Hoffman  27 Andy Kurum  28 Gregory A Sadowy  2 Kevin B Wheeler  2 Emmanuel Decrossas  2 Yasser Hussein  2 Curtis Jin  2 Frank Boldissar  2 Neil Chamberlain  2 Brenda Hernandez  2 Elham Maghsoudi  2 Jonathan Mihaly  29 Shana Worel  2 Vik Singh  2 Kyung Pak  2 Jordan Tanabe  2 Robert Johnson  2 Mohammad Ashtijou  2 Tafesse Alemu  2 Michael Burke  2 Brian Custodero  2 Michael C Tope  2 David Hawkins  2 Kim Aaron  2 Gregory T Delory  30 Paul S Turin  30 Donald L Kirchner  16 Karthik Srinivasan  2 Julie Xie  2 Brad Ortloff  2 Ian Tan  2 Tim Noh  2 Duane Clark  2 Vu Duong  2 Shivani Joshi  2 Jeng Lee  2 Elvis Merida  2 Ruzbeh Akbar  2 Xueyang Duan  2 Ines Fenni  2 Mauricio Sanchez-Barbetty  31 Chaitali Parashare  2 Duane C Howard  32 Julie Newman  33 Marvin G Cruz  2 Neil J Barabas  34 Ahmadreza Amirahmadi  2 Brendon Palmer  2 Rohit S Gawande  2 Grace Milroy  2 Rick Roberti  2 Frank E Leader  2 Richard D West  2 Jan Martin  2 Vijay Venkatesh  2 Virgil Adumitroaie  2 Christine Rains  2 Cuong Quach  2 Jordi E Turner  3 Colleen M O'Shea  3 Scott D Kempf  1 Gregory Ng  1 Dillon P Buhl  1 Timothy J Urban  1
Affiliations
Review

Radar for Europa Assessment and Sounding: Ocean to Near-Surface (REASON)

Donald D Blankenship et al. Space Sci Rev. 2024.

Abstract

The Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) is a dual-frequency ice-penetrating radar (9 and 60 MHz) onboard the Europa Clipper mission. REASON is designed to probe Europa from exosphere to subsurface ocean, contributing the third dimension to observations of this enigmatic world. The hypotheses REASON will test are that (1) the ice shell of Europa hosts liquid water, (2) the ice shell overlies an ocean and is subject to tidal flexing, and (3) the exosphere, near-surface, ice shell, and ocean participate in material exchange essential to the habitability of this moon. REASON will investigate processes governing this material exchange by characterizing the distribution of putative non-ice material (e.g., brines, salts) in the subsurface, searching for an ice-ocean interface, characterizing the ice shell's global structure, and constraining the amplitude of Europa's radial tidal deformations. REASON will accomplish these science objectives using a combination of radar measurement techniques including altimetry, reflectometry, sounding, interferometry, plasma characterization, and ranging. Building on a rich heritage from Earth, the moon, and Mars, REASON will be the first ice-penetrating radar to explore the outer solar system. Because these radars are untested for the icy worlds in the outer solar system, a novel approach to measurement quality assessment was developed to represent uncertainties in key properties of Europa that affect REASON performance and ensure robustness across a range of plausible parameters suggested for the icy moon. REASON will shed light on a never-before-seen dimension of Europa and - in concert with other instruments on Europa Clipper - help to investigate whether Europa is a habitable world.

Keywords: Europa; Europa Clipper; Ice shell; Ice-penetrating radar.

PubMed Disclaimer

Conflict of interest statement

Competing InterestsThe authors have no competing interests to declare that are relevant to the content of this article.

Figures

Fig. 1
Fig. 1
Radargram generated from ice-penetrating radar data collected over Totten Ice Shelf, Antarctica (TOT/JKB2d/X16a) modified from Lindzey (2015)
Fig. 2
Fig. 2
Radargram generated from ice-penetrating radar data collected over iceberg B15, Antarctica (MCM/SJB2/BERG04c; Blankenship, personal communication)
Fig. 3
Fig. 3
Near-surface properties of McMurdo Ice Shelf, Antarctica derived from ice-penetrating radar data, modified from Grima et al. (2016)
Fig. 4
Fig. 4
Radargram generated from ice-penetrating radar data collected over iceberg B15, Antarctica showing extensive surface and basal crevassing, modified from Peters et al. (2007b)
Fig. 5
Fig. 5
Radargram generated from ice-penetrating radar data collected over Filchner-Ronne Ice Shelf, Antarctica illustrating how a marine–meteoric ice interface could be mistaken as the ice–ocean interface, modified from Thyssen (1988)
Fig. 6
Fig. 6
Altimetry profile (top) and radargram (bottom) generated from ice-penetrating radar and laser altimetry data collected over Lake Vostok, Antarctica illustrating how complementary altimetry and radar sounding data can support the identification of subglacial lakes, modified from Blankenship et al. (2009)
Fig. 7
Fig. 7
Comparison between radargrams generated from ice-penetrating radar data collected over ice on Earth at 60 MHz center frequency, 15 MHz bandwidth (top) and Mars at ∼1 MHz center frequency and bandwidth (bottom), modified from Picardi et al. (2005)
Fig. 8
Fig. 8
Comparison between radargrams generated from ice-penetrating radar data collected over the Mars North Polar Layered Deposits (top) by SHARAD (middle) and MARSIS (bottom), illustrating the scientific value of complementary sounding frequencies, modified from material provided by Ali Safaeinili
Fig. 9
Fig. 9
Summary of REASON ice shell domains and measurement techniques
Fig. 10
Fig. 10
Modeled radar attenuation in Europa’s ice shell adopting the thermal model of Chyba et al. (1998), electrical parameters of Moore (2000), and the regime modes described in Table 4
Fig. 11
Fig. 11
Illustration of the geometry involved in interferometry, including two representations of off-nadir surface features that could generate clutter, where “ribbons” represent rough, flat terrain and “curbs” represent smooth, angled terrain (EPM refers to Europa Point Model, Sect. 4.3)
Fig. 12
Fig. 12
EPMs used to represent Europa for evaluating Measurement Quality Requirements
Fig. 13
Fig. 13
NSLE
Fig. 14
Fig. 14
Depiction of Europa Clipper spacecraft with REASON antenna assemblies
Fig. 15
Fig. 15
REASON functional block diagram
Fig. 16
Fig. 16
REASON implementation block diagram
Fig. 17
Fig. 17
HF RF In-vault block diagram
Fig. 18
Fig. 18
VHF RF In-vault block diagram
Fig. 19
Fig. 19
REASON HF stowed (top) and deployed (bottom)
Fig. 20
Fig. 20
REASON VHF antenna assembly stowed (top) and deployed (bottom)
Fig. 21
Fig. 21
REASON out-of-vault hardware
Fig. 22
Fig. 22
Block diagram of the EGSE used in the in-vault radar hardware I&T campaigns
Fig. 23
Fig. 23
The sequence of events and timing for a typical REASON flyby
Fig. 24
Fig. 24
Visualization of planned cruise activities for REASON (+/ 1 month), the asterisk denotes a backup activity awaiting approval
Fig. 25
Fig. 25
Modeled HF (left) and VHF (right) antenna beam patterns, referenced to their phase centers at the center of the spacecraft bus
Fig. 26
Fig. 26
REASON PDS data collections

References

    1. Abramov O, Spencer JR (2008) Numerical modeling of endogenic thermal anomalies on Europa. Icarus 195:378–385. 10.1016/j.icarus.2007.11.027 10.1016/j.icarus.2007.11.027 - DOI
    1. Abramov O, Rathbun JA, Schmidt BE, Spencer JR (2013) Detectability of thermal signatures associated with active formation of ‘chaos terrain’ on Europa. Earth Planet Sci Lett 384:37–41. 10.1016/j.epsl.2013.09.027 10.1016/j.epsl.2013.09.027 - DOI
    1. Acton C, Bachman N, Semenov B, Wright E (2018) A look towards the future in the handling of space science mission geometry. Planet Space Sci 150:9–12. 10.1016/j.pss.2017.02.013 10.1016/j.pss.2017.02.013 - DOI
    1. Aglyamov Y, Schroeder DM, Vance SD (2017) Bright prospects for radar detection of Europa’s ocean. Icarus 281:334–337. 10.1016/j.icarus.2016.08.014 10.1016/j.icarus.2016.08.014 - DOI
    1. Alexander C, Carlson R, Consolmagno G, Greeley R, Morrison D (2009) The exploration history of Europa. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, pp 3–26. 10.2307/j.ctt1xp3wdw.7

LinkOut - more resources