Predicting creative behavior using resting-state electroencephalography
- PMID: 38951602
- PMCID: PMC11217288
- DOI: 10.1038/s42003-024-06461-6
Predicting creative behavior using resting-state electroencephalography
Abstract
Neuroscience research has shown that specific brain patterns can relate to creativity during multiple tasks but also at rest. Nevertheless, the electrophysiological correlates of a highly creative brain remain largely unexplored. This study aims to uncover resting-state networks related to creative behavior using high-density electroencephalography (HD-EEG) and to test whether the strength of functional connectivity within these networks could predict individual creativity in novel subjects. We acquired resting state HD-EEG data from 90 healthy participants who completed a creative behavior inventory. We then employed connectome-based predictive modeling; a machine-learning technique that predicts behavioral measures from brain connectivity features. Using a support vector regression, our results reveal functional connectivity patterns related to high and low creativity, in the gamma frequency band (30-45 Hz). In leave-one-out cross-validation, the combined model of high and low networks predicts individual creativity with very good accuracy (r = 0.36, p = 0.00045). Furthermore, the model's predictive power is established through external validation on an independent dataset (N = 41), showing a statistically significant correlation between observed and predicted creativity scores (r = 0.35, p = 0.02). These findings reveal large-scale networks that could predict creative behavior at rest, providing a crucial foundation for developing HD-EEG-network-based markers of creativity.
© 2024. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures
References
-
- Hassan M, Wendling F. Electroencephalography source connectivity: aiming for high resolution of brain networks in time and space. IEEE Signal Process. Mag. 2018;35:81–96. doi: 10.1109/MSP.2017.2777518. - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
