Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul;56(7):1397-1411.
doi: 10.1038/s41588-024-01798-4. Epub 2024 Jul 1.

Understanding the genetic complexity of puberty timing across the allele frequency spectrum

Katherine A Kentistou #  1 Lena R Kaisinger #  1 Stasa Stankovic  1 Marc Vaudel  2   3 Edson Mendes de Oliveira  4 Andrea Messina  5   6 Robin G Walters  7 Xiaoxi Liu  8 Alexander S Busch  9   10 Hannes Helgason  11   12 Deborah J Thompson  13 Federico Santoni  5   6 Konstantin M Petricek  14 Yassine Zouaghi  5   6 Isabel Huang-Doran  4 Daniel F Gudbjartsson  11   12 Eirik Bratland  2   15 Kuang Lin  7 Eugene J Gardner  1 Yajie Zhao  1 Raina Y Jia  1 Chikashi Terao  8   16   17 Marjorie J Riggan  18 Manjeet K Bolla  13 Mojgan Yazdanpanah  19 Nahid Yazdanpanah  19 Jonathan P Bradfield  20   21 Linda Broer  22   23 Archie Campbell  24 Daniel I Chasman  25 Diana L Cousminer  26   27   28 Nora Franceschini  29 Lude H Franke  30 Giorgia Girotto  31   32 Chunyan He  33   34 Marjo-Riitta Järvelin  35   36   37   38   39 Peter K Joshi  40 Yoichiro Kamatani  41 Robert Karlsson  42 Jian'an Luan  1 Kathryn L Lunetta  43   44 Reedik Mägi  45 Massimo Mangino  46   47 Sarah E Medland  48   49   50 Christa Meisinger  51 Raymond Noordam  52 Teresa Nutile  53 Maria Pina Concas  31 Ozren Polašek  54   55 Eleonora Porcu  56   57 Susan M Ring  58   59 Cinzia Sala  60 Albert V Smith  61   62 Toshiko Tanaka  63 Peter J van der Most  64 Veronique Vitart  65 Carol A Wang  66   67 Gonneke Willemsen  68 Marek Zygmunt  69 Thomas U Ahearn  70 Irene L Andrulis  71   72 Hoda Anton-Culver  73 Antonis C Antoniou  13 Paul L Auer  74 Catriona L K Barnes  40 Matthias W Beckmann  75 Amy Berrington de Gonzalez  76 Natalia V Bogdanova  77   78   79 Stig E Bojesen  80   81 Hermann Brenner  82   83   84 Julie E Buring  25 Federico Canzian  85 Jenny Chang-Claude  86   87 Fergus J Couch  88 Angela Cox  89 Laura Crisponi  56 Kamila Czene  42 Mary B Daly  90 Ellen W Demerath  91 Joe Dennis  13 Peter Devilee  92   93 Immaculata De Vivo  94   95 Thilo Dörk  78 Alison M Dunning  96 Miriam Dwek  97 Johan G Eriksson  98   99   100 Peter A Fasching  75 Lindsay Fernandez-Rhodes  101 Liana Ferreli  56 Olivia Fletcher  102 Manuela Gago-Dominguez  103 Montserrat García-Closas  70 José A García-Sáenz  104 Anna González-Neira  105 Harald Grallert  106   107 Pascal Guénel  108 Christopher A Haiman  109 Per Hall  42   110 Ute Hamann  111 Hakon Hakonarson  21   26   112   113 Roger J Hart  114 Martha Hickey  115 Maartje J Hooning  116 Reiner Hoppe  117   118 John L Hopper  119 Jouke-Jan Hottenga  68 Frank B Hu  95   120 Hanna Huebner  75 David J Hunter  7   94 ABCTB InvestigatorsHelena Jernström  121 Esther M John  122   123 David Karasik  124   125 Elza K Khusnutdinova  126   127 Vessela N Kristensen  128   129 James V Lacey  130   131 Diether Lambrechts  132   133 Lenore J Launer  134 Penelope A Lind  48   50   135 Annika Lindblom  136   137 Patrik K E Magnusson  42 Arto Mannermaa  138   139 Mark I McCarthy  140   141   142 Thomas Meitinger  143 Cristina Menni  46 Kyriaki Michailidou  13   144 Iona Y Millwood  7 Roger L Milne  119   145 Grant W Montgomery  146 Heli Nevanlinna  147 Ilja M Nolte  64 Dale R Nyholt  148 Nadia Obi  149   150 Katie M O'Brien  151 Kenneth Offit  152   153 Albertine J Oldehinkel  154 Sisse R Ostrowski  155   156 Aarno Palotie  157   158   159   160   161   162 Ole B Pedersen  156   163 Annette Peters  107   164 Giulia Pianigiani  31 Dijana Plaseska-Karanfilska  165 Anneli Pouta  166 Alfred Pozarickij  7 Paolo Radice  167 Gad Rennert  168 Frits R Rosendaal  169 Daniela Ruggiero  53   170 Emmanouil Saloustros  171 Dale P Sandler  151 Sabine Schipf  172 Carsten O Schmidt  172 Marjanka K Schmidt  173   174 Kerrin Small  46 Beatrice Spedicati  32 Meir Stampfer  94   95 Jennifer Stone  119   175 Rulla M Tamimi  94   176 Lauren R Teras  177 Emmi Tikkanen  162   178 Constance Turman  94   179 Celine M Vachon  180 Qin Wang  13 Robert Winqvist  181   182 Alicja Wolk  183 Babette S Zemel  112   184 Wei Zheng  185 Ko W van Dijk  93   186 Behrooz Z Alizadeh  64 Stefania Bandinelli  187 Eric Boerwinkle  188 Dorret I Boomsma  68   189 Marina Ciullo  53   170 Georgia Chenevix-Trench  48 Francesco Cucca  56   57 Tõnu Esko  45 Christian Gieger  106   107   190 Struan F A Grant  26   27   28   112   191 Vilmundur Gudnason  61   62 Caroline Hayward  65 Ivana Kolčić  54   55 Peter Kraft  94   179 Deborah A Lawlor  58   59 Nicholas G Martin  48 Ellen A Nøhr  192 Nancy L Pedersen  42 Craig E Pennell  66   67   193 Paul M Ridker  25 Antonietta Robino  31 Harold Snieder  64 Ulla Sovio  35   194 Tim D Spector  46 Doris Stöckl  107   195 Cathie Sudlow  24   196 Nic J Timpson  58   59 Daniela Toniolo  60 André Uitterlinden  22   23 Sheila Ulivi  31 Henry Völzke  172 Nicholas J Wareham  1 Elisabeth Widen  162 James F Wilson  40 Lifelines Cohort StudyDanish Blood Donor StudyOvarian Cancer Association ConsortiumBreast Cancer Association ConsortiumBiobank Japan ProjectChina Kadoorie Biobank Collaborative GroupPaul D P Pharoah  13   96 Liming Li  197   198 Douglas F Easton  13   96 Pål R Njølstad  2   199 Patrick Sulem  11 Joanne M Murabito  44   200 Anna Murray  201 Despoina Manousaki  202   203   204 Anders Juul  10   205   206 Christian Erikstrup  207   208 Kari Stefansson  11   62 Momoko Horikoshi  209 Zhengming Chen  7 I Sadaf Farooqi  4 Nelly Pitteloud  5   6 Stefan Johansson  2   15 Felix R Day #  1 John R B Perry #  210   211 Ken K Ong #  1   212
Collaborators, Affiliations

Understanding the genetic complexity of puberty timing across the allele frequency spectrum

Katherine A Kentistou et al. Nat Genet. 2024 Jul.

Erratum in

  • Publisher Correction: Understanding the genetic complexity of puberty timing across the allele frequency spectrum.
    Kentistou KA, Kaisinger LR, Stankovic S, Vaudel M, Mendes de Oliveira E, Messina A, Walters RG, Liu X, Busch AS, Helgason H, Thompson DJ, Santoni F, Petricek KM, Zouaghi Y, Huang-Doran I, Gudbjartsson DF, Bratland E, Lin K, Gardner EJ, Zhao Y, Jia RY, Terao C, Riggan MJ, Bolla MK, Yazdanpanah M, Yazdanpanah N, Bradfield JP, Broer L, Campbell A, Chasman DI, Cousminer DL, Franceschini N, Franke LH, Girotto G, He C, Järvelin MR, Joshi PK, Kamatani Y, Karlsson R, Luan J, Lunetta KL, Mägi R, Mangino M, Medland SE, Meisinger C, Noordam R, Nutile T, Concas MP, Polašek O, Porcu E, Ring SM, Sala C, Smith AV, Tanaka T, van der Most PJ, Vitart V, Wang CA, Willemsen G, Zygmunt M, Ahearn TU, Andrulis IL, Anton-Culver H, Antoniou AC, Auer PL, Barnes CLK, Beckmann MW, Berrington de Gonzalez A, Bogdanova NV, Bojesen SE, Brenner H, Buring JE, Canzian F, Chang-Claude J, Couch FJ, Cox A, Crisponi L, Czene K, Daly MB, Demerath EW, Dennis J, Devilee P, De Vivo I, Dörk T, Dunning AM, Dwek M, Eriksson JG, Fasching PA, Fernandez-Rhodes L, Ferreli L, Fletcher O, Gago-Dominguez M, García-Closas M, García-Sáenz JA, González-Neira A, Grallert H, Guénel P, Haiman CA, Hall P, Hamann U, Hakonarson H, Hart RJ, H… See abstract for full author list ➔ Kentistou KA, et al. Nat Genet. 2024 Aug;56(8):1763-1764. doi: 10.1038/s41588-024-01857-w. Nat Genet. 2024. PMID: 38982295 Free PMC article. No abstract available.

Abstract

Pubertal timing varies considerably and is associated with later health outcomes. We performed multi-ancestry genetic analyses on ~800,000 women, identifying 1,080 signals for age at menarche. Collectively, these explained 11% of trait variance in an independent sample. Women at the top and bottom 1% of polygenic risk exhibited ~11 and ~14-fold higher risks of delayed and precocious puberty, respectively. We identified several genes harboring rare loss-of-function variants in ~200,000 women, including variants in ZNF483, which abolished the impact of polygenic risk. Variant-to-gene mapping approaches and mouse gonadotropin-releasing hormone neuron RNA sequencing implicated 665 genes, including an uncharacterized G-protein-coupled receptor, GPR83, which amplified the signaling of MC3R, a key nutritional sensor. Shared signals with menopause timing at genes involved in DNA damage response suggest that the ovarian reserve might signal centrally to trigger puberty. We also highlight body size-dependent and independent mechanisms that potentially link reproductive timing to later life disease.

PubMed Disclaimer

Conflict of interest statement

J.R.B.P. and E.J.G. are employees/shareholders of Insmed. J.R.B.P. also receives research funding from GSK and consultancy fees from WW International. Y. Zhao is a UK University worker at GSK. D.L.C. is an employee and shareholder of GSK. J.P.B. is employed by GSK. I.S.F. has consulted for a number of companies developing weight loss drugs including Eli Lilly, Novo Nordisk and Rhythm Pharmaceuticals. D.J.T. is employed by Genomics PLC. E.T. is employed by Pfizer. D.A.L. has received support from Roche Diagnostics and Medtronic for work unrelated to the research in this paper. T.D.S. is cofounder and stakeholder of Zoe Global. P.A.F. conducts research funded by Amgen, Novartis and Pfizer, and he received Honoraria from Roche, Novartis and Pfizer. M.W.B. conducts research funded by Amgen, Novartis and Pfizer. M.I.M. is currently an employee of Genentech and a holder of Roche stock. The other authors declare no competing interests.

Figures

Fig. 1
Fig. 1. AAM GWAS and gene prioritization.
a, Miami plot showing signals from the European meta-analysis for AAM (top), and G2G scores with names of the top 50 genes annotated (bottom). Top, y axis is capped at −log10(1 × 10−150) for visibility. b, The 50 top-scoring genes implicated by G2G, annotated by their sources of evidence. Relevant data are included in Supplementary Tables 2 and 13–16.
Fig. 2
Fig. 2. Exome-wide rare variant burden associations with AAM.
a, Manhattan plot showing gene burden test results for AAM. Six genes passing exome-wide significance (P < 1.54 × 10−6) are highlighted. Point shapes indicate variant-predicted functional class (DMG; damaging). b, Quantile–quantile (QQ) plot for gene burden tests. c, Comparison of gene burden associations (effect sizes with 95% CIs) for AAM (female participants, in years, n = 222,283) and AVB (male participants, in three categories, n = 178,625). Relevant data are included in Supplementary Table 5.
Fig. 3
Fig. 3. Epistatic interactions between rare coding variants and common genetic susceptibility on AAM in the UK Biobank.
a, Interaction effects (mean and 95% CIs) on AAM between a GWAS PGS and carriage of qualifying rare variants in the six exome-highlighted genes (n = 222,283). b,c, Predicted mean (with 95% CI) AAM in (b) noncarriers (black) and carriers (light blue) of rare variants in six genes without significant (P > 0.05) interaction effects and (c) in noncarriers (left) and carriers (right) of rare variants in ZNF483, which shows significant interaction (P = 0.025). In c, points show individual AAM values, with the color gradient indicating increasing age. d, Plot of individual rare damaging (DMG) variant associations with AAM by ZNF483 functional domains. The coding part of ZNF483 is depicted by the horizontal black line. Included DMG variants had an MAF < 0.1% and were annotated to be either HC PTVs or missense variants with CADD score ≥25. Each variant association is represented by a circle and vertical line—the line length indicates the −log10(P), in the direction of its effect on menarche in carriers of the rare allele, and the circle size indicates the number of carriers of each variant (that is, allele count). Relevant data are included in Supplementary Table 12.
Fig. 4
Fig. 4. Stratification of AAM signals and biological pathway enrichment by their influence on early childhood weight.
a, Proportion of GWAS signals for AAM by early childhood weight trajectory. b, Biological pathways enriched for high-confidence AAM genes (left), plus enrichment within early childhood weight trajectories (right). Pathway enrichment was calculated using g:Profiler, and the displayed P values are Bonferroni-corrected. Row names describe pathway clusters. Strength of associations with individual pathways is indicated by circles. Circle size reflects the proportion of pathway genes that are high-confidence AAM genes (in percentage). Right, determining whether each pathway cluster remains enriched for AAM genes when stratified by early childhood weight trajectory. Supporting data are included in Supplementary Tables 21 and 23–26.
Fig. 5
Fig. 5. Enrichment of gene drivers of GnRH migration and maturation in the AAM GWAS.
a, Schematic representation of the stages of GnRH neuron migration during embryonic development. Using RNA-seq data, Zouaghi et al. grouped differentially expressed genes into 23 expressional trajectories based on their comparative level of expression during the early (yellow), intermediate (amber) and late (red) stages of GnRH migration. b, Genome-wide MAGMA enrichment for AAM gene associations within each expression trajectory. Colored symbols accompanying the points indicate the expression level of genes within each trajectory at the three aforementioned stages of migration; that is, the first yellow symbols indicate whether gene expression remains the same (=), is upregulated (^) or downregulated (v) in the early stage of migration. Orange and red symbols denote the same for the intermediate and late stages of migration, accordingly. c, Trajectories significantly (Padj < 0.05) enriched at the genome-wide level in b are highlighted in red and also show significant (P < 0.05) overlap with the 665 high-confidence AAM genes. Supporting data are included in Supplementary Tables 18 and 27.
Fig. 6
Fig. 6. Interactions between GPCRs on AAM.
a, A total of 24 brain-expressed GPCRs were implicated in AAM by the G2G analysis of the white European GWAS data. Point colors indicate the number of concordant G2G predictors implicating each GPCR. b, Time-resolved NDP-αMSH-stimulated cAMP production in HEK293 cells expressing MC3R-alone or with both MC3R and GPR83. Data are presented as the mean (±s.e.) percentage of the maximal MC3R-alone response (from six independent experiments). c, AAM according to dosage of MC3R function-increasing C alleles at rs3746619 (x axis in each panel) and GPR83 expression-increasing T alleles at rs592068. Predicted means are represented by the lines, and the accompanying 95% CIs are denoted by the shaded areas. βinteraction = −0.034 ± 0.015 years, Pinteraction = 0.02. Supporting data are included in Supplementary Tables 28 and 30.

Update of

  • Understanding the genetic complexity of puberty timing across the allele frequency spectrum.
    Kentistou KA, Kaisinger LR, Stankovic S, Vaudel M, de Oliveira EM, Messina A, Walters RG, Liu X, Busch AS, Helgason H, Thompson DJ, Santon F, Petricek KM, Zouaghi Y, Huang-Doran I, Gudbjartsson DF, Bratland E, Lin K, Gardner EJ, Zhao Y, Jia R, Terao C, Riggan M, Bolla MK, Yazdanpanah M, Yazdanpanah N, Bradfield JP, Broer L, Campbell A, Chasman DI, Cousminer DL, Franceschini N, Franke LH, Girotto G, He C, Järvelin MR, Joshi PK, Kamatani Y, Karlsson R, Luan J, Lunetta KL, Mägi R, Mangino M, Medland SE, Meisinger C, Noordam R, Nutile T, Concas MP, Polašek O, Porcu E, Ring SM, Sala C, Smith AV, Tanaka T, van der Most PJ, Vitart V, Wang CA, Willemsen G, Zygmunt M, Ahearn TU, Andrulis IL, Anton-Culver H, Antoniou AC, Auer PL, Barnes CL, Beckmann MW, Berrington A, Bogdanova NV, Bojesen SE, Brenner H, Buring JE, Canzian F, Chang-Claude J, Couch FJ, Cox A, Crisponi L, Czene K, Daly MB, Demerath EW, Dennis J, Devilee P, Vivo I, Dörk T, Dunning AM, Dwek M, Eriksson JG, Fasching PA, Fernandez-Rhodes L, Ferreli L, Fletcher O, Gago-Dominguez M, García-Closas M, García-Sáenz JA, González-Neira A, Grallert H, Guénel P, Haiman CA, Hall P, Hamann U, Hakonarson H, Hart RJ, Hickey M, Hooning MJ, Hopp… See abstract for full author list ➔ Kentistou KA, et al. medRxiv [Preprint]. 2023 Jun 20:2023.06.14.23291322. doi: 10.1101/2023.06.14.23291322. medRxiv. 2023. Update in: Nat Genet. 2024 Jul;56(7):1397-1411. doi: 10.1038/s41588-024-01798-4. PMID: 37503126 Free PMC article. Updated. Preprint.

References

    1. Parent, A.-S. et al. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr. Rev.24, 668–693 (2003). 10.1210/er.2002-0019 - DOI - PubMed
    1. Gajbhiye, R., Fung, J. N. & Montgomery, G. W. Complex genetics of female fertility. NPJ Genom. Med.3, 29 (2018). 10.1038/s41525-018-0068-1 - DOI - PMC - PubMed
    1. McGrath, I. M., Mortlock, S. & Montgomery, G. W. Genetic regulation of physiological reproductive lifespan and female fertility. Int. J. Mol. Sci.22, 2556 (2021). 10.3390/ijms22052556 - DOI - PMC - PubMed
    1. Elks, C. E. et al. Age at menarche and type 2 diabetes risk: the EPIC-InterAct study. Diabetes Care36, 3526–3534 (2013). 10.2337/dc13-0446 - DOI - PMC - PubMed
    1. Prentice, P. & Viner, R. M. Pubertal timing and adult obesity and cardiometabolic risk in women and men: a systematic review and meta-analysis. Int. J. Obes. (Lond)37, 1036–1043 (2013). 10.1038/ijo.2012.177 - DOI - PubMed

Substances