SAGA: Stability-Aware Gait Analysis in constraint-free environments
- PMID: 38954927
- DOI: 10.1016/j.gaitpost.2024.06.010
SAGA: Stability-Aware Gait Analysis in constraint-free environments
Abstract
Background: Gait abnormality detection is a challenging task in clinical practice. The majority of the current frameworks for gait abnormality detection involve the individual processes of segmentation, feature estimation, feature learning, and similarity assessment. Since each component of these modules is fixed and they are mutually independent, their performance under difficult circumstances is not ideal. We combine those processes into a single framework, a gait abnormality detection system with an end-to-end network.
Methods: It is made up of convolutional neural networks and Deep-Q-learning methods: one for coordinate estimation and the other for classification. In a single joint learning technique that may be trained together, the two networks are modeled. This method is significantly more efficient for use in real life since it drastically simplifies the conventional step-by-step approach.
Results: The proposed model is experimented on MATLAB R2020a. While considering into consideration the stability factor, our proposed model attained an average case accuracy of 95.3%, a sensitivity of 96.4%, and a specificity of 94.1%.
Significance: Our paradigm for quantifying gait analysis using commodity equipment will improve access to quantitative gait analysis in medical facilities and rehabilitation centers while also allowing academics to conduct large-scale investigations for gait-related disorders. Numerous experimental findings demonstrate the effectiveness of the proposed strategy and its ability to provide cutting-edge outcomes.
Keywords: Clinical gait analysis; Gait abnormality; Gait analysis; Gait monitoring; Neural networks; Pose estimation; Smart healthcare.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
LinkOut - more resources
Full Text Sources