Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct;30(10):2990-3003.
doi: 10.1038/s41591-024-03122-3. Epub 2024 Jul 3.

Sex-dependent APOE4 neutrophil-microglia interactions drive cognitive impairment in Alzheimer's disease

Affiliations

Sex-dependent APOE4 neutrophil-microglia interactions drive cognitive impairment in Alzheimer's disease

Neta Rosenzweig et al. Nat Med. 2024 Oct.

Abstract

APOE4 is the strongest genetic risk factor for Alzheimer's disease (AD), with increased odds ratios in female carriers. Targeting amyloid plaques shows modest improvement in male non-APOE4 carriers. Leveraging single-cell transcriptomics across APOE variants in both sexes, multiplex flow cytometry and validation in two independent cohorts of APOE4 female carriers with AD, we identify a new subset of neutrophils interacting with microglia associated with cognitive impairment. This phenotype is defined by increased interleukin (IL)-17 and IL-1 coexpressed gene modules in blood neutrophils and in microglia of cognitively impaired female APOE ε4 carriers, showing increased infiltration to the AD brain. APOE4 female IL-17+ neutrophils upregulated the immunosuppressive cytokines IL-10 and TGFβ and immune checkpoints, including LAG3 and PD-1, associated with accelerated immune aging. Deletion of APOE4 in neutrophils reduced this immunosuppressive phenotype and restored the microglial response to neurodegeneration, limiting plaque pathology in AD mice. Mechanistically, IL-17F upregulated in APOE4 neutrophils interacts with microglial IL-17RA to suppress the induction of the neurodegenerative phenotype, and blocking this axis supported cognitive improvement in AD mice. These findings provide a translational basis to target IL-17F in APOE ε4 female carriers with cognitive impairment.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Belloy, M. E., Napolioni, V. & Greicius, M. D. A quarter century of APOE and Alzheimer’s disease: progress to date and the path forward. Neuron 101, 820–838 (2019). - PubMed - PMC
    1. Yin, Z. et al. APOE4 impairs the microglial response in Alzheimer’s disease by inducing TGFβ-mediated checkpoints. Nat. Immunol. 24, 1839–1853 (2023). - PubMed
    1. Krasemann, S. et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581.e569 (2017). - PubMed - PMC
    1. Keren-Shaul, H. et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell 169, 1276–1290.e1217 (2017). - PubMed
    1. Yin, Z. et al. Identification of a protective microglial state mediated by miR-155 and interferon-γ signaling in a mouse model of Alzheimer’s disease. Nat. Neurosci. 26, 1196–1207 (2023). - PubMed - PMC

MeSH terms